A097432 Integer part of the hypotenuse of right triangles with consecutive integer legs.
2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101
Offset: 1
Keywords
Examples
If legs = 3,4 then hypot = floor(sqrt(9+16)) = 5, the 3rd term.
Crossrefs
Cf. A001951.
Programs
-
Maple
A097432 := proc(n) floor(sqrt(n^2+(n+1)^2)) ; end proc: # R. J. Mathar, Oct 04 2018
-
Mathematica
Table[Floor[Sqrt[n^2+(n+1)^2]],{n,100}] (* Harvey P. Dale, Apr 02 2011 *)
-
PARI
f(n) = for(j=1,n,x=j;y=j+1;print1(floor(sqrt(x^2+y^2))","))
Formula
a(n) = floor(sqrt(n^2 + (n+1)^2)) = floor(sqrt(A001844(n))).