A104778
Table of values with shape sequence A000041 related to involutions and multinomials. Also column sums of the Kostka matrices associated with the partitions (in Abramowitz & Stegun ordering).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 4, 1, 2, 3, 5, 10, 1, 2, 3, 5, 7, 13, 26, 1, 2, 3, 4, 5, 8, 11, 14, 20, 38, 76, 1, 2, 3, 4, 5, 8, 10, 13, 14, 23, 32, 42, 60, 116, 232, 1, 2, 3, 4, 5, 5, 8, 11, 14, 17, 14, 24, 30, 40, 56, 43, 73, 103, 136, 196, 382, 764, 1
Offset: 0
The 47 multinomials (corresponding to A005651(4)=47) can be distributed as in the following triangular array:
1
9 1
4 6 1
9 2 3 1
1 3 2 3 1
divide each term by
1
3 1
2 3 1
3 2 3 1
1 3 2 3 1
yielding
1
3 1
2 2 1
3 1 1 1
1 1 1 1 1
with column sums 10 5 3 2 1.
Therefore the fourth row of the table is 1 2 3 5 10
The initial rows are:
1,
1,
1, 2,
1, 2, 4,
1, 2, 3, 5, 10,
1, 2, 3, 5, 7, 13, 26,
1, 2, 3, 4, 5, 8, 11, 14, 20, 38, 76,
1, 2, 3, 4, 5, 8, 10, 13, 14, 23, 32, 42, 60, 116, 232,
1, 2, 3, 4, 5, 5, 8, 11, 14, 17, 14, 24, 30, 40, 56, 43, 73, 103, 136, 196, 382, 764,
...
-
(* for function 'kostka' see A178718 *)
aspartitions[n_] := Reverse /@ Sort[Sort /@ Partitions[n]];
asorder[n_] := rankpartition /@ Reverse /@ Sort[Sort /@ Partitions[n]];
Flatten[Table[Tr/@ Transpose[PadLeft[#,PartitionsP[k]] [[asorder[k]] ]&/@ kostka/@ aspartitions[k]],{k,11}]]
A104707
Triangle read by rows distributing the 1602 multinomials described by A005651(6) related to Young tableau and Kostka numbers.
Original entry on oeis.org
1, 25, 1, 81, 20, 1, 25, 54, 15, 1, 100, 15, 36, 15, 1, 256, 60, 10, 27, 10, 1, 25, 128, 30, 5, 27, 10, 1, 100, 10, 64, 30, 5, 18, 10, 1, 81, 40, 5, 32, 10, 5, 9, 5, 1, 25, 27, 10, 0, 32, 10, 0, 9, 5, 1, 1, 5, 9, 10, 5, 16, 10, 5, 9, 5, 1
Offset: 1
The triangle is:
1;
25, 1;
81, 20, 1;
25, 54, 15, 1;
100, 15, 36, 15, 1;
256, 60, 10, 27, 10, 1;
25, 128, 30, 5, 27, 10, 1;
100, 10, 64, 30, 5, 18, 10, 1;
81, 40, 5, 32, 10, 5, 9, 5, 1;
25, 27, 10, 0, 32, 10, 0, 9, 5, 1;
1, 5, 9, 10, 5, 16, 10, 5, 9, 5, 1;
- D. Stanton and D. White, Constructive Combinatorics, 1986, page 83.
A104779
a(n) is the sum of entries of n-th Kostka matrix for the partitions of n.
Original entry on oeis.org
1, 1, 3, 7, 21, 57, 182, 565, 1931, 6670, 24537, 92337, 364602, 1477148, 6219031, 26875932, 119930947, 548688443, 2580814003, 12425175838, 61302331782, 309055818656, 1592723862598, 8374123173858, 44917765035082, 245452258746785, 1366116578058731, 7736098938006873
Offset: 0
For n=4, {1,1,1,1,1} + {0,1,1,2,3} + {0,0,1,1,2} + {0,0,0,1,3} + {0,0,0,0,1} = 21.
- Ludovic Schwob, Table of n, a(n) for n = 0..39
- E. Egge et al., From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix
- E. Egge et al., From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix, European Journal of Combinatorics, Volume 31, Issue 8, December 2010, Pages 2014-2027.
- Wouter Meeussen, Schur Polynomials
- Wouter Meeussen, Kostka numbers up to partitions of 20
- Wouter Meeussen, Mathematica code for 'kostka' function
- Ludovic Schwob, On the enumeration of double cosets and self-inverse double cosets, arXiv:2506.04007 [math.CO], 2025. See p. 13.
A115351
Sum of interior Multinomial Coefficient components.
Original entry on oeis.org
1, 1, 0, 0, 11, 96, 798, 6197, 54400, 505503, 5241223, 58377002, 712436696, 9315437345, 131487856629, 1978064399766, 31777977184459, 541010185315536, 9758067888585784, 185538235462354828, 3714549428287398782
Offset: 0
a(5) = 96 because the sum for the below triangle is 246 and the three edges sum to 120, 26 and 7; therefore 246 - (120 + 26 + 7 - 3) = 96.
1
16 1
25 12 1
36 15 8 1
25 18 10 8 1
16 10 6 5 4 1
1 4 5 6 5 4 1
Showing 1-4 of 4 results.
Comments