A097523 a(n) = least k such that k - prime(n) and k + prime(n) are both prime.
5, 8, 8, 10, 18, 16, 20, 22, 30, 32, 36, 42, 48, 46, 50, 56, 72, 66, 70, 78, 76, 84, 90, 92, 100, 132, 108, 120, 114, 116, 130, 138, 140, 142, 162, 156, 160, 168, 170, 176, 210, 186, 198, 196, 200, 202, 222, 226, 230, 232, 246, 252, 246, 258, 264, 294, 272, 276
Offset: 1
Examples
Prime(10) = 29; both 32 - 29 = 3 and 32 + 29 = 61 are prime, and 32 is the smallest integer for which this is the case, so a(10) = 32.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local p, k; p:= ithprime(n); for k from p+1 by 2 do if isprime(k+p) and isprime(k-p) then return k fi od end proc: f(1):= 5: map(f, [$1..100]); # Robert Israel, Jul 26 2015
-
Mathematica
f[n_] := Block[{k = Prime[n], p = Prime[n]}, While[ !PrimeQ[k - p] || !PrimeQ[k + p], k++ ]; k]; Table[ f[n], {n, 60}] (* Robert G. Wilson v, Aug 28 2004 *)
Formula
Extensions
Corrected by Robert G. Wilson v, Aug 28 2004