A097558 Sum{k=1 to oo} a(k)/k^r = sqrt(zeta(r) -3/4) +1/2.
1, 1, 1, 0, 1, -1, 1, 1, 0, -1, 1, 3, 1, -1, -1, -1, 1, 3, 1, 3, -1, -1, 1, -7, 0, -1, 1, 3, 1, 7, 1, 3, -1, -1, -1, -12, 1, -1, -1, -7, 1, 7, 1, 3, 3, -1, 1, 19, 0, 3, -1, 3, 1, -7, -1, -7, -1, -1, 1, -27, 1, -1, 3, -6, -1, 7, 1, 3, -1, 7, 1, 45, 1, -1, 3, 3, -1, 7, 1, 19, -1, -1, 1, -27, -1, -1, -1, -7, 1, -27, -1, 3, -1, -1, -1, -51, 1, 3, 3, -12, 1, 7
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A[1]:= 1: for n from 2 to 100 do A[n]:= 1 - add(A[n/k]*A[k], k= numtheory:-divisors(n) minus {1,n}) od: seq(A[n],n=1..100); # Robert Israel, Mar 01 2016
Formula
a(1)=1; for n>=2, a(n) = 1 - sum{k|n, 2<=k<=n-1} a(n/k) a(k).
From Robert Israel, Mar 01 2016: (Start)
a(n) depends only on the prime signature of n.
If p is prime, a(p^k) = (-1)^(k+1)*A005043(k-1).
(End)
Extensions
More terms from David Wasserman, Dec 27 2007
Comments