cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A339755 a(1) = 1; a(n+1) = 1 + Sum_{d|n} a(n/d) * a(d).

Original entry on oeis.org

1, 2, 5, 11, 27, 55, 131, 263, 571, 1168, 2445, 4891, 10113, 20227, 40979, 82229, 165632, 331265, 665365, 1330731, 2666729, 5334769, 10679319, 21358639, 42740683, 85482096, 171004645, 342015001, 684113793, 1368227587, 2736633741, 5473267483, 10946869669, 21893763789, 43788190107
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 15 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory;
          1+add(a(d)*a((n-1)/d), d=divisors(n-1))
        end:
    seq(a(n), n=1..35);  # Alois P. Heinz, Dec 15 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + Sum[a[(n - 1)/d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 35}]

Formula

G.f.: x * (1/(1 - x) + Sum_{i>=1} Sum_{j>=1} a(i) * a(j) * x^(i*j)).
a(n) ~ c * 2^n, where c = 1.27442410710035207761153205319824525254716841098942446508584158048310907298... - Vaclav Kotesovec, Dec 16 2020
Showing 1-1 of 1 results.