cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097591 Triangle read by rows: T(n,k) is the number of permutations of [n] with exactly k increasing runs of odd length.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 6, 0, 17, 0, 1, 0, 70, 0, 49, 0, 1, 90, 0, 500, 0, 129, 0, 1, 0, 1890, 0, 2828, 0, 321, 0, 1, 2520, 0, 23100, 0, 13930, 0, 769, 0, 1, 0, 83160, 0, 215292, 0, 62634, 0, 1793, 0, 1, 113400, 0, 1549800, 0, 1697430, 0, 264072, 0, 4097, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 29 2004

Keywords

Examples

			Triangle starts:
     1;
     0,    1;
     1,    0,     1;
     0,    5,     0,    1;
     6,    0,    17,    0,     1;
     0,   70,     0,   49,     0,   1;
    90,    0,   500,    0,   129,   0,   1;
     0, 1890,     0, 2828,     0, 321,   0, 1;
  2520,    0, 23100,    0, 13930,   0, 769, 0, 1;
  ...
Row n has n+1 entries.
Example: T(3,1) = 5 because we have (123), 13(2), (2)13, 23(1) and (3)12 (the runs of odd length are shown between parentheses).
		

Crossrefs

Bisections of columns k=0-1 give: A000680, A302910.
Row sums give A000142.
T(n+1,n-1) gives A000337.
T(4n,2n) gives A308962.

Programs

  • Maple
    G:=t^2/(1-t*x-(1-t^2)*exp(-t*x)): Gser:=simplify(series(G,x=0,12)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(expand(n!*coeff(Gser,x^n))) od: seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..11);
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, x^t, expand(
          add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+
          add(b(u-j, o+j-1, 1)*x^t, j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 19 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, x^t, Expand[Sum[b[u+j-1, o-j, Mod[t+1, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, 1]*x^t, {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

E.g.f.: t^2/[1-tx-(1-t^2)exp(-tx)].
Sum_{k=1..n} k * T(n,k) = A096654(n-1) for n > 0. - Alois P. Heinz, Jul 03 2019