A097592 Triangle read by rows: T(n,k) is the number of permutations of [n] with exactly k increasing runs of even length.
1, 1, 1, 1, 2, 4, 7, 12, 5, 25, 52, 43, 102, 299, 258, 61, 531, 1750, 1853, 906, 3141, 11195, 15634, 8965, 1385, 20218, 83074, 133697, 94398, 31493, 146215, 675304, 1207256, 1088575, 460929, 50521, 1174889, 5880354, 11974457, 12625694, 6632158
Offset: 0
Examples
Triangle starts: 1; 1; 1, 1; 2, 4; 7, 12, 5; 25, 52, 43; 102, 299, 258, 61; Example: T(4,2) = 5 because we have 13/24, 14/23, 23/14, 24/13 and 34/12.
Links
- Alois P. Heinz, Rows n = 0..180, flattened
Crossrefs
Programs
-
Maple
G:=2*(t-1)*u/(-2*u+(2-t+t*u)*exp((-1+u)*x/2)+(t-2+t*u)*exp(-(1+u)*x/2)): u:=sqrt(5-4*t): Gser:=simplify(series(G,x=0,12)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(n!*coeff(Gser,x^n)) od: seq(seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)),n=0..11); # second Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, x^t, expand( add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+ add(b(u-j, o+j-1, 0)*x^t, j=1..u))) end: T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..12); # Alois P. Heinz, Nov 19 2013
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, x^t, Expand[Sum[b[u+j-1, o-j, Mod[t+1, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, 0]*x^t, {j, 1, u}]]]; T[n_] := Function[ {p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)
Formula
E.g.f.: 2(t-1)u/[ -2u+(2-t+tu)exp((-1+u)x/2)+(t-2+tu)exp(-(1+u)x/2)], where u=sqrt(5-4t).
Sum_{k=1..floor(n/2)} k * T(n,k) = A097593(n). - Alois P. Heinz, Jul 04 2019
Comments