cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097594 a(n) = (a(n-1) mod a(n-2)) + a(n-2), a(0) = 3, a(1) = 2.

Original entry on oeis.org

2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025, 196418, 121393, 317811, 196418, 514229, 317811, 832040, 514229
Offset: 0

Views

Author

Gerald McGarvey, Aug 29 2004

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(3 +Floor(n/2) +2*(n mod 2)): n in [0..60]]; // G. C. Greubel, Dec 06 2022
    
  • Mathematica
    LinearRecurrence[{0,1,0,1}, {2,5,3,8}, 60] (* G. C. Greubel, Dec 06 2022 *)
  • SageMath
    [fibonacci(3 +(n//2) + 2*(n%2)) for n in range(61)] # G. C. Greubel, Dec 06 2022

Formula

a(2n) = Fibonacci(n+4), a(2n+1) = Fibonacci(n+3).
a(n) = A053602(n+6).
a(n) = abs( A051792(n+11) ).
G.f.: (2 + 5*x + x^2 + 3*x^3)/(1 - x^2 - x^4). - G. C. Greubel, Dec 06 2022