cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097597 Number of permutations of [n] with no increasing runs of even length.

Original entry on oeis.org

1, 1, 1, 2, 7, 25, 102, 531, 3141, 20218, 146215, 1174889, 10225678, 96226363, 978420285, 10657592850, 123672458583, 1525420453945, 19929519469558, 274771355003651, 3987385414116085, 60764250319690666, 970085750385722631, 16190361659675002857
Offset: 0

Views

Author

Emeric Deutsch, Aug 29 2004

Keywords

Examples

			a(4) = 7 because 2/134, 3/124, 4/123, 234/1, 134/2, 124/3 and 4/3/2/1 are the only permutations of [4] with no increasing runs of even length.
		

Crossrefs

Column k=0 of A097592.
Cf. A000045.

Programs

  • Maple
    G:=sqrt(5)/(sqrt(5)-2*exp(-x/2)*sinh(sqrt(5)*x/2)): Gser:=simplify(series(G,x=0,25)): 1,seq(n!*coeff(Gser,x^n),n=1..24);
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, t,
          add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+
          `if`(t=0, 0, add(b(u-j, o+j-1, 1), j=1..u)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 19 2013
  • Mathematica
    CoefficientList[Series[Sqrt[5]/(Sqrt[5]-2*E^(-x/2)*(E^(Sqrt[5]*x/2)/2 - E^(-Sqrt[5]*x/2)/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)

Formula

E.g.f.: sqrt(5)/(sqrt(5)-2*exp(-x/2)*sinh(sqrt(5)*x/2)).
E.g.f.: (1 + Sum_{n>=1} (-1)^n F_n x^n/n!)^(-1), where F_n is the n-th Fibonacci number. - Ira M. Gessel, Jul 27 2014
a(n) ~ n! * sinh(r*sqrt(5)) / (2^n*r^(n+1)*(sqrt(5)*cosh(r*sqrt(5))-sinh(r*sqrt(5)))), where r = 0.68903745689226... is the root of the equation 1-exp(-2*sqrt(5)*r) = sqrt(5)*exp((1-sqrt(5))*r). - Vaclav Kotesovec, Sep 29 2013