A097597 Number of permutations of [n] with no increasing runs of even length.
1, 1, 1, 2, 7, 25, 102, 531, 3141, 20218, 146215, 1174889, 10225678, 96226363, 978420285, 10657592850, 123672458583, 1525420453945, 19929519469558, 274771355003651, 3987385414116085, 60764250319690666, 970085750385722631, 16190361659675002857
Offset: 0
Keywords
Examples
a(4) = 7 because 2/134, 3/124, 4/123, 234/1, 134/2, 124/3 and 4/3/2/1 are the only permutations of [4] with no increasing runs of even length.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..474
- Ira M. Gessel, Generating Functions and Enumeration of Sequences, Ph.D. thesis, MIT, 1977, p. 52.
- Toufik Mansour and Mark Shattuck, A combinatorial proof of a result for permutation pairs, Central European Journal of Mathematics, 10 (2012), 797-806.
Programs
-
Maple
G:=sqrt(5)/(sqrt(5)-2*exp(-x/2)*sinh(sqrt(5)*x/2)): Gser:=simplify(series(G,x=0,25)): 1,seq(n!*coeff(Gser,x^n),n=1..24); # second Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, t, add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+ `if`(t=0, 0, add(b(u-j, o+j-1, 1), j=1..u))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Nov 19 2013
-
Mathematica
CoefficientList[Series[Sqrt[5]/(Sqrt[5]-2*E^(-x/2)*(E^(Sqrt[5]*x/2)/2 - E^(-Sqrt[5]*x/2)/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
Formula
E.g.f.: sqrt(5)/(sqrt(5)-2*exp(-x/2)*sinh(sqrt(5)*x/2)).
E.g.f.: (1 + Sum_{n>=1} (-1)^n F_n x^n/n!)^(-1), where F_n is the n-th Fibonacci number. - Ira M. Gessel, Jul 27 2014
a(n) ~ n! * sinh(r*sqrt(5)) / (2^n*r^(n+1)*(sqrt(5)*cosh(r*sqrt(5))-sinh(r*sqrt(5)))), where r = 0.68903745689226... is the root of the equation 1-exp(-2*sqrt(5)*r) = sqrt(5)*exp((1-sqrt(5))*r). - Vaclav Kotesovec, Sep 29 2013