cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097632 a(n) = 2^n * Lucas(n) * (n-1)!.

Original entry on oeis.org

2, 12, 64, 672, 8448, 138240, 2672640, 60641280, 1568931840, 45705461760, 1478924697600, 52646746521600, 2044394156851200, 86005817907609600, 3896481847600742400, 189139342470414336000, 9793081532749971456000, 538748376721309827072000, 31381673358053118836736000
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Comments

Number of possible well-colored cycles on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^n*LucasL[n,1]*(n-1)!; Array[a,19] (* or *)
    nmax=19; CoefficientList[Series[-Log[1-2x-4x^2], {x,0,nmax}], x]Range[0,nmax]! (* Stefano Spezia, Jan 15 2024 *)
  • Python
    def A097632(n):
        L0, L1, F, i = 1, 2, 2, 1
        while i < n:
            L0, L1, F, i = L0+L1, L0, 2*i*F, i+1
        return L0*F # A.H.M. Smeets, Jan 15 2024

Formula

E.g.f.: -log(1-2*x-4*x^2).
a(n) = A000204(n) * A066318(n).
a(n) ~ sqrt(2*Pi/n)*(2*n*phi/e)^n. - Stefano Spezia, Jan 16 2024

Extensions

Definition corrected by and a(18)-a(19) from Stefano Spezia, Jan 15 2024