cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277372 a(n) = Sum_{k=1..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.

Original entry on oeis.org

0, 1, 10, 141, 2584, 58745, 1602576, 51165205, 1874935168, 77644293201, 3588075308800, 183111507687581, 10230243235200000, 621111794820235849, 40722033570202507264, 2867494972696071121125, 215840579093024990396416, 17294837586403146090259745, 1469799445329208661211021312
Offset: 0

Views

Author

Peter Luschny, Oct 11 2016

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n,n-k)*n^(n-k)*n!/(n-k)!, k=1..n):
    seq(a(n), n=0..18);
    # Alternatively:
    A277372 := n -> n!*LaguerreL(n,-n) - n^n:
    seq(simplify(A277372(n)), n=0..18);
  • PARI
    a(n) = sum(k=1, n, binomial(n,n-k)*n^(n-k)*n!/(n-k)!); \\ Michel Marcus, Oct 12 2016

Formula

a(n) = n!*LaguerreL(n, -n) - n^n.
a(n) = (-1)^n*KummerU(-n, 1, -n) - n^n.
a(n) = n^n*(hypergeom([-n, -n], [], 1/n) - 1) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016

A329655 Square array read by antidiagonals: T(n,k) is the number of relations between set A with n elements and set B with k elements that are both right unique and left unique.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 33, 20, 5, 6, 30, 72, 72, 30, 6, 7, 42, 135, 208, 135, 42, 7, 8, 56, 228, 500, 500, 228, 56, 8, 9, 72, 357, 1044, 1545, 1044, 357, 72, 9, 10, 90, 528, 1960, 4050, 4050, 1960, 528, 90, 10, 11, 110, 747, 3392, 9275, 13326, 9275, 3392, 747, 110, 11
Offset: 1

Views

Author

Roy S. Freedman, Nov 18 2019

Keywords

Comments

A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right unique if (a, b1) in R and (a,b2) in R implies b1=b2. A relation R is left unique if (a1,b) in R and (a2,b) in R implies a1=a2.

Examples

			The symmetric array T(n,k) begins:
  1,   2,    3,    4,     5,      6,       7,       8,        9, ...
  2,   6,   12,   20,    30,     42,      56,      72,       90, ...
  3,  12,   33,   72,   135,    228,     357,     528,      747, ...
  4,  20,   72,  208,   500,   1044,    1960,    3392,     5508, ...
  5,  30,  135,  500,  1545,   4050,    9275,   19080,    36045, ...
  6,  42,  228, 1044,  4050,  13326,   37632,   93288,   207774, ...
  7,  56,  357, 1960,  9275,  37632,  130921,  394352,  1047375, ...
  8,  72,  528, 3392, 19080,  93288,  394352, 1441728,  4596552, ...
  9,  90,  747, 5508, 36045, 207774, 1047375, 4596552, 17572113, ...
		

Crossrefs

The diagonal T(n,n) is A097662. T(1,k)=A000027; T(2,k)=A002378; T(3,k)=A054602.

Programs

  • Maple
    T:= (n,k)-> value(Sum(binomial(n,j)*binomial(k, j)*j!, j=1..k)):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] * Binomial[k, j] * j!, {j, 1, k}]; Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
  • MuPAD
    T:=(n,k)->_plus (binomial(n,j)*binomial(k, j)* j! $ j=1..k):

Formula

T(n,k) = Sum_{j=1..k} binomial(n,j)*binomial(k,j)*j!.
T(n,k) = A088699(n,k)-1.
Showing 1-2 of 2 results.