A097680 E.g.f.: (1/(1-x^5))*exp( 5*sum_{i>=0} x^(5*i+1)/(5*i+1) ) for an order-5 linear recurrence with varying coefficients.
1, 5, 25, 125, 625, 3245, 19825, 162125, 1650625, 17703125, 186644425, 2032320125, 25569960625, 382772328125, 6166860390625, 98093486946125, 1555728351450625, 26765871718953125, 527380555479765625, 11241893092061328125
Offset: 0
Keywords
Examples
The sequence {1, 5, 25/2!, 125/3!, 625/4!, 3245/5!, 19825/6!, 162125/7!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link).
References
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
Links
- Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004.
- Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
- Eric Weisstein's World of Mathematics, Digamma Function.
Programs
-
PARI
{a(n)=n!*polcoeff(1/(1-x^5)*exp(5*sum(i=0,n,x^(5*i+1)/(5*i+1)))+x*O(x^n),n)}
-
PARI
a(n)=if(n<0,0,if(n==0,1,5*a(n-1)+if(n<5,0,n!/(n-5)!*a(n-5))))
Formula
For n>=5: a(n) = 5*a(n-1) + n!/(n-5)!*a(n-5); for n<5: a(n)=5^n. E.g.f.: B(x)*exp(C(x)) where B(x) = 1/(1-x^5)/(1-x)*(1+phi*x+x^2)^(phi/2)/(1-x/phi+x^2)^(1/phi/2) and C(x) = 5^(1/4)*sqrt(phi)*atan(5^(1/4)*sqrt(phi)*x/(2-x/phi)) + 5^(1/4)/sqrt(phi)*atan(5^(1/4)/sqrt(phi)*x/(2+phi*x)) and where phi=(sqrt(5)+1)/2.
Comments