A097681 E.g.f.: (1/(1-x^6))*exp( 6*sum_{i>=0} x^(6*i+1)/(6*i+1) ) for an order-6 linear recurrence with varying coefficients.
1, 6, 36, 216, 1296, 7776, 47376, 314496, 2612736, 28740096, 368395776, 4796983296, 60300205056, 750367328256, 10151357239296, 164475953381376, 3110937349718016, 61410199093641216, 1174438559356747776
Offset: 0
Keywords
Examples
The sequence {1, 6, 36/2!, 216/3!, 1296/4!, 7776/5!, 47376/6!,...} is generated by a recursion described by Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link).
References
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
Links
- Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004.
- Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
- Eric Weisstein's World of Mathematics, Digamma Function.
Programs
-
PARI
{a(n)=n!*polcoeff(1/(1-x^6)*exp(6*sum(i=0,n,x^(6*i+1)/(6*i+1)))+x*O(x^n),n)}
-
PARI
a(n)=if(n<0,0,if(n==0,1,6*a(n-1)+if(n<6,0,n!/(n-6)!*a(n-6))))
Formula
For n>=6: a(n) = 6*a(n-1) + n!/(n-6)!*a(n-6); for n<6: a(n)=6^n. E.g.f.: 1/(1-x^6)*(1+x)/(1-x)*sqrt((1+x+x^2)/(1-x+x^2))* exp(sqrt(3)*atan(sqrt(3)*x/(1-x^2))).
Comments