A097696 Largest achievable determinant of a 4 X 4 matrix whose elements are the 16 consecutive integers n-15,...,n.
7343, 8784, 12065, 16800, 21600, 26400, 31200, 36000, 40800, 45600, 50400, 55200, 60000, 64800, 69600, 74400, 79200, 84000, 88800, 93600, 98400, 103200, 108000, 112800, 117600, 122400, 127200, 132000, 136800, 141600, 146400, 151200, 156000
Offset: 8
Keywords
Crossrefs
Formula
For n>10 an arrangement maximizing the determinant is of the following form: det((n, n-9, n-13, n-8), (n-12, n-1, n-11, n-5), (n-7, n-6, n-2, n-15), (n-10, n-14, n-4, n-3)) =2400*(2*n-15). a(n)=a(15-n) for n<8.
Empirical G.f.: x^8*(65*x^4+1454*x^3+1840*x^2-5902*x+7343) / (x-1)^2. [Colin Barker, Jan 10 2013]