cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067778 Numbers k such that gcd(k, numerator(B(2*k))) is not squarefree where B(2*k) are the Bernoulli numbers.

Original entry on oeis.org

25, 49, 75, 98, 121, 125, 169, 175, 196, 225, 242, 245, 275, 289, 325, 338, 343, 361, 363, 375, 392, 425, 475, 484, 490, 507, 525, 529, 539, 575, 578, 625, 637, 675, 676, 686, 722, 725, 726, 775, 784, 825, 833, 841, 845, 847, 867, 875, 925, 931, 961, 968
Offset: 1

Views

Author

Benoit Cloitre, Feb 06 2002

Keywords

Comments

All members so far are themselves not squarefree. - Robert G. Wilson v, Aug 28 2004

Crossrefs

Programs

  • Mathematica
    Select[ Range[1000], !SquareFreeQ[ GCD[ #, Numerator[ BernoulliB[2# ]] ]] &] (* Robert G. Wilson v, Aug 28 2004 *)

Extensions

More terms from Robert G. Wilson v, Aug 28 2004

A097703 Numbers j such that m = 216*j + 108 satisfies sigma(m) != 2*usigma(m).

Original entry on oeis.org

1, 4, 7, 10, 12, 13, 16, 19, 22, 24, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 60, 61, 62, 64, 67, 70, 73, 76, 79, 82, 84, 85, 87, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 122, 124, 127, 130, 133, 136, 137, 139, 142, 144, 145, 148, 151, 154, 157
Offset: 1

Views

Author

Ralf Stephan, Aug 26 2004

Keywords

Comments

Conjecture: all numbers of form 3k + 1 are here. Other terms are listed in A097704.
From Amiram Eldar, Aug 31 2024: (Start)
The conjecture is true. If j = 3*k+1, then m = 324*(2*k+1). Let e = A007949(2*k+1) >= 0, so 2*k+1 = 3^e * i and i coprime to 6. Then sigma(m)/(2 * usigma(m)) = (7/20) * (3^(e+5)-1)/(3^(e+4)+1) * sigma(i)/usigma(i) >= 847/820 > 1, because sigma(i)/usigma(i) >= 1 for all i.
If m = 216*j + 108 = 108*(2*j+1) then sigma(m) = 2*usigma(m) if and only if 2*j+1 is a squarefree number coprime to 3 (see A097702), i.e., 2*j+1 is a term of A276378. Therefore this sequence consists of numbers j such that 2*j+1 is either a multiple of 3 or nonsquarefree (or both). (End)

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Complement[ Range[157], (Select[ Range[37000], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    is(k) = {my(f = factor(216*k + 108)); sigma(f) != 2 * prod(i = 1, #f~, 1 + f[i,1]^f[i,2]);} \\ Amiram Eldar, Aug 31 2024

A098241 Numbers k such that 216*k+108 is a term of A097703 and A007494 and A098240.

Original entry on oeis.org

302, 2117, 2909, 3327, 3932, 5142, 5747, 6957, 8772, 9377, 11192, 12402, 13007, 14217, 14547, 16032, 17847, 18452, 20267, 20366, 21477, 22082, 23292, 23897, 25107, 25403, 26922, 27527, 29342, 30552, 31157, 32367, 32972, 34182, 35997, 36602, 37823, 38417, 39627
Offset: 1

Views

Author

Ralf Stephan and Robert G. Wilson v, Sep 15 2004

Keywords

Comments

Numbers k such that m = 216*k+108 satisfies sigma(m) <> 2*usigma(m) (A097703), m is not of the form 3x+1 (A007494) and GCD(2*m+1, numerator(Bernoulli(4*m+2))) is squarefree (A098240).
Also, terms m of A097704 such that GCD(2*m+1, Bernoulli(4*m+2)) is squarefree. Most terms of A097704 are in A098240. These are the exceptions.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; lmt = 1296000; t = (Select[ Range[ lmt], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216; u = (Select[ Range[ Floor[(lmt - 108)/432]], !SquareFreeQ[ GCD[ #, Numerator[ BernoulliB[ 2# ]] ]] &] -1)/2; v = Table[ 3k - 2, {k, Floor[(lmt - 108)/216]}]; Complement[ Range[ Floor[ (lmt - 108)/216]], t, u, v]
    q[n_] := Mod[n, 3] != 1 && (Divisible[2*n + 1, 3] || (! Divisible[2*n + 1, 3] && ! SquareFreeQ[2*n + 1])) && SquareFreeQ[GCD[2*n + 1, BernoulliB[4*n + 2]]]; Select[Range[10^4], q] (* Amiram Eldar, Aug 31 2024 *)

Extensions

More terms from Amiram Eldar, Aug 31 2024

A098242 Numbers k such that gcd(2k+1, numerator(Bernoulli(4k+2))) is not squarefree.

Original entry on oeis.org

12, 24, 37, 60, 62, 84, 87, 112, 122, 137, 144, 162, 171, 180, 181, 187, 212, 237, 253, 262, 264, 269, 287, 312, 318, 337, 362, 387, 412, 416, 420, 422, 423, 433, 437, 462, 465, 480, 487, 512, 537, 541, 544, 562, 563, 587, 591, 612, 637, 662, 665, 684, 687
Offset: 1

Views

Author

Ralf Stephan, Sep 01 2004

Keywords

Crossrefs

Complement of A098240.

Programs

  • Mathematica
    Select[Range[700], !SquareFreeQ[GCD[2*# + 1, BernoulliB[4*# + 2]]] &] (* Amiram Eldar, Aug 31 2024 *)
  • PARI
    for(n=1,3000,if(!issquarefree(gcd(2*n+1,numerator(bernfrac(4*n+2)))),print1(n",")))
Showing 1-4 of 4 results.