A097706 Part of n composed of prime factors of form 4k+3.
1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 11, 3, 1, 7, 3, 1, 1, 9, 19, 1, 21, 11, 23, 3, 1, 1, 27, 7, 1, 3, 31, 1, 33, 1, 7, 9, 1, 19, 3, 1, 1, 21, 43, 11, 9, 23, 47, 3, 49, 1, 3, 1, 1, 27, 11, 7, 57, 1, 59, 3, 1, 31, 63, 1, 1, 33, 67, 1, 69, 7, 71, 9, 1, 1, 3, 19, 77, 3, 79, 1, 81, 1, 83, 21
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
a:= n-> mul(`if`(irem(i[1], 4)=3, i[1]^i[2], 1), i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Jun 09 2014
-
Mathematica
a[n_] := Product[{p, e} = pe; If[Mod[p, 4] == 3, p^e, 1], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Jun 16 2015, updated May 29 2019 *)
-
PARI
a(n)=local(f); f=factor(n); prod(k=1, matsize(f)[1], if(f[k, 1]%4<>3, 1, f[k, 1]^f[k, 2]))
-
Python
from sympy import factorint from operator import mul def a072436(n): f=factorint(n) return 1 if n == 1 else reduce(mul, [1 if i%4==3 else i**f[i] for i in f]) def a(n): return n/a072436(n) # Indranil Ghosh, May 08 2017
-
Python
from math import prod from sympy import factorint def A097706(n): return prod(p**e for p, e in factorint(n).items() if p & 3 == 3) # Chai Wah Wu, Jun 28 2022
Comments