A097728 Chebyshev U(n,x) polynomial evaluated at x=73 = 2*6^2+1.
1, 146, 21315, 3111844, 454307909, 66325842870, 9683118751111, 1413669011819336, 206385992606871945, 30130941251591484634, 4398911036739749884619, 642210880422751891669740
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..461
- R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (146, -1)
Programs
-
Mathematica
LinearRecurrence[{146, -1},{1, 146},12] (* Ray Chandler, Aug 11 2015 *)
Formula
a(n) = 2*73*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*73)= U(n, 73), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-146*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*146^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((73+12*sqrt(37))^(n+1) - (73-12*sqrt(37))^(n+1))/(24*sqrt(37)).
Comments