cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097728 Chebyshev U(n,x) polynomial evaluated at x=73 = 2*6^2+1.

Original entry on oeis.org

1, 146, 21315, 3111844, 454307909, 66325842870, 9683118751111, 1413669011819336, 206385992606871945, 30130941251591484634, 4398911036739749884619, 642210880422751891669740
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Used to form integer solutions of Pell equation a^2 - 37*b^2 =-1. See A097729 with A097730.

Programs

  • Mathematica
    LinearRecurrence[{146, -1},{1, 146},12] (* Ray Chandler, Aug 11 2015 *)

Formula

a(n) = 2*73*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*73)= U(n, 73), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-146*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*146^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((73+12*sqrt(37))^(n+1) - (73-12*sqrt(37))^(n+1))/(24*sqrt(37)).