A097761
Inverse of binomial transform of Whitney triangle.
Original entry on oeis.org
1, -2, 1, 4, -4, 1, -10, 13, -6, 1, 28, -42, 26, -8, 1, -84, 138, -102, 43, -10, 1, 264, -462, 385, -198, 64, -12, 1, -858, 1573, -1430, 845, -338, 89, -14, 1, 2860, -5434, 5278, -3458, 1610, -530, 118, -16, 1, -9724, 19006, -19448, 13804, -7208, 2788, -782, 151, -18, 1, 33592
Offset: 0
Rows begin:
{1},
{-2,1},
{4,-4,1},
{-10,13,-6,1},
...
Original entry on oeis.org
1, 2, 1, 4, 4, 1, 8, 11, 6, 1, 16, 26, 22, 8, 1, 32, 57, 64, 37, 10, 1, 64, 120, 163, 130, 56, 12, 1, 128, 247, 382, 386, 232, 79, 14, 1, 256, 502, 848, 1024, 794, 378, 106, 16, 1, 512, 1013, 1816, 2510, 2380, 1471, 576, 137, 18, 1
Offset: 0
First few rows of the triangle:
1;
2, 1;
4, 4, 1;
8, 11, 6, 1;
16, 26, 22, 8, 1;
32, 57, 64, 37, 10, 1;
...
A320904
T(n, k) = binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n - k + 1)], -1), triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 5, 7, 1, 7, 16, 15, 1, 9, 29, 42, 31, 1, 11, 46, 93, 99, 63, 1, 13, 67, 176, 256, 219, 127, 1, 15, 92, 299, 562, 638, 466, 255, 1, 17, 121, 470, 1093, 1586, 1486, 968, 511, 1, 19, 154, 697, 1941, 3473, 4096, 3302, 1981, 1023
Offset: 0
Triangle starts:
[0] 1
[1] 1, 3
[2] 1, 5, 7
[3] 1, 7, 16, 15
[4] 1, 9, 29, 42, 31
[5] 1, 11, 46, 93, 99, 63
[6] 1, 13, 67, 176, 256, 219, 127
[7] 1, 15, 92, 299, 562, 638, 466, 255
[8] 1, 17, 121, 470, 1093, 1586, 1486, 968, 511
-
T := (n, k) -> binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n-k+1)], -1):
for n from 0 to 11 do seq(simplify(T(n, k)), k = 0..n) od;
-
s={};For[n=0,n<19,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)
Showing 1-3 of 3 results.
Comments