A097811 Numbers n such that n^3 is the sum of three or more consecutive positive cubes.
6, 20, 40, 60, 70, 180, 330, 540, 1155, 1581, 2805, 2856, 3876, 5544, 16830, 27060, 62244, 82680, 90090, 175440, 237456, 249424, 273819, 413820, 431548, 534660, 860706, 1074744, 1205750, 1306620, 1630200, 1764070, 1962820, 1983150
Offset: 1
Keywords
Examples
20 is in this sequence because 11^3 + 12^3 + 13^3 + 14^3 = 20^3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..68 (terms n = 1..55 from Donovan Johnson)
- Michael Bennett, Vandita Patel, and Samir Siksek, Perfect powers that are sums of consecutive cubes, arXiv:1603.08901 [math.NT], 2016. [But typo on last line of article where 1115 should be 1155]
- K. S. Brown, Sum of Consecutive Nth Powers Equals an Nth Power
Crossrefs
Programs
-
Mathematica
g[m0_, m1_] := (m1-m0+1)(m0+m1)(m0^2+m1^2+m1-m0)/4; lst={}; Do[n=g[m0, m1]^(1/3); If[IntegerQ[n], Print[{n, m0, m1, m1-m0+1}]; AppendTo[lst, n]], {m1, 2, 14000}, {m0, m1-1, 1, -1}]; Union[lst]
Formula
a(n) = A131643(n)^(1/3). - Jonathan Sondow, Jan 10 2016
Extensions
Name edited by Altug Alkan, Dec 07 2015
Comments