A097836 Chebyshev polynomials S(n,51).
1, 51, 2600, 132549, 6757399, 344494800, 17562477401, 895341852651, 45644872007800, 2326993130545149, 118631004785794799, 6047854250944989600, 308321935793408674801, 15718370871212897425251, 801328592496064360013000
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..584
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (51,-1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
a:=[1,51];; for n in [2..30] do a[n]:=51*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-51*x+x^2) )); // G. C. Greubel, Jan 12 2019 -
Mathematica
LinearRecurrence[{51,-1}, {1,51}, 30] (* G. C. Greubel, Jan 12 2019 *)
-
PARI
my(x='x+O('x^30)); Vec(1/(1-51*x+x^2)) \\ G. C. Greubel, Jan 12 2019
-
Sage
(1/(1-51*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
Formula
a(n) = S(n, 51)=U(n, 51/2)= S(2*n+1, sqrt(53))/sqrt(53) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 51*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=51.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (51+7*sqrt(53))/2 and am := (51-7*sqrt(53))/2 = 1/ap.
G.f.: 1/(1-51*x+x^2).
Comments