A097855 Numbers palindromic in bases 10 and 17.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 252, 494, 545, 767, 818, 989, 2882, 4554, 61416, 94249, 177771, 256652, 335533, 1388831, 4165614, 8837388, 31744713, 102757201, 103595301, 123616321, 124454421, 207535702, 208373802, 212313212, 229232922
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..70 (first 67 terms from Ray Chandler)
Crossrefs
Programs
-
Magma
[n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 17) eq Reverse(Intseq(n, 17))]; // Vincenzo Librandi, Nov 23 2014
-
Mathematica
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 17], AppendTo[l, a]], {n, 40000}]; l (* Robert G. Wilson v, Sep 03 2004 *) b1=10; b2=17; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 17] &] (* Robert Price, Nov 09 2019 *)
Extensions
More terms from Robert G. Wilson v, Sep 03 2004
Term 0 prepended by Robert G. Wilson v, Oct 07 2014