cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097862 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n and height k (n>=0, k>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 5, 1, 31, 18, 1, 1, 63, 56, 7, 1, 127, 161, 33, 1, 1, 255, 441, 129, 9, 1, 511, 1170, 453, 52, 1, 1, 1023, 3036, 1485, 242, 11, 1, 2047, 7753, 4644, 990, 75, 1, 1, 4095, 19565, 14040, 3718, 403, 13, 1, 8191, 48930, 41392, 13145, 1872, 102
Offset: 0

Views

Author

Emeric Deutsch, Sep 01 2004

Keywords

Comments

Row sums are the Motzkin numbers (A001006).

Examples

			Triangle begins:
  1;
  1;
  1,   1;
  1,   3;
  1,   7,    1;
  1,  15,    5;
  1,  31,   18,   1;
  1,  63,   56,   7;
  1, 127,  161,  33,  1;
  1, 255,  441, 129,  9;
  1, 511, 1170, 453, 52, 1;
  ...
Row n contains 1+floor(n/2) terms.
T(5,2) = 5 counts HUUDD, UUDDH, UUDHD, UHUDD and UUHDD, where U=(1,1), H=(1,0) and D=(1,-1).
		

Crossrefs

Programs

  • Maple
    P[0]:=1: P[1]:=1-z: for n from 2 to 10 do P[n]:=sort(expand((1-z)*P[n-1]-z^2*P[n-2])) od: for k from 0 to 8 do h[k]:=series(z^(2*k)/P[k]/P[k+1],z=0,20) od: a:=proc(n,k) if k=0 then 1 elif n=0 then 0 else coeff(h[k],z^n) fi end: seq(seq(a(n,k),k=0..floor(n/2)),n=0..15);
    # second Maple program:
    b:= proc(x, y, h) option remember; `if`(x=0, z^h, add(
          b(x-1, y+j, max(h, y)), j=-min(1, y)..min(1, x-y-1)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..16);  # Alois P. Heinz, Mar 13 2017, revised Mar 28 2020
  • Mathematica
    b[x_, y_, m_] := b[x, y, m] = If[y > x, 0, If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + b[x - 1, y, m] + b[x - 1, y + 1, Max[m, y + 1]]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][ b[n, 0, 0]];
    Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, May 12 2017, after Alois P. Heinz *)

Formula

The g.f. for column k is z^(2k)/[P_k*P_{k+1}], where the polynomials P_k are defined by P_0=1, P_1=1-z, P_k=(1-z)P_{k-1}-z^2*P_{k-2}.
Sum_{k=1..floor(n/2)} k * T(n,k) = A333498(n). - Alois P. Heinz, Mar 28 2020