cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097922 G.f.: (1-x^4)*(1-x^10)/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^5)).

Original entry on oeis.org

1, 1, 3, 4, 6, 9, 12, 16, 21, 26, 32, 39, 46, 54, 63, 72, 82, 93, 104, 116, 129, 142, 156, 171, 186, 202, 219, 236, 254, 273, 292, 312, 333, 354, 376, 399, 422, 446, 471, 496, 522, 549, 576, 604, 633, 662, 692, 723, 754, 786, 819, 852, 886, 921, 956, 992, 1029, 1066, 1104
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2004

Keywords

References

  • G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988; p. 188.

Programs

  • Magma
    [1,1] cat [2 + Ceiling(n*(n-1)/3): n in [2..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    CoefficientList[Series[(1-x^4)*(1-x^10)/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^5)), {x,0,50}], x] (* or *) Join[{1,1}, LinearRecurrence[{2,-1,1,-2, 1}, {3, 4, 6, 9, 12}, 30]] (* or *) Join[{1,1}, Table[2 + Ceiling[n*(n-1)/3], {n,2,30}]] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    x='x+O('x^30); Vec((1-x^4)*(1-x^10)/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^5))) \\ G. C. Greubel, Dec 20 2017
    
  • PARI
    for(n=0,30, print1(if(n==0, 1, if(n==1, 1, 2 + ceil(n*(n-1)/3))), ", ")) \\ G. C. Greubel, Dec 20 2017
    

Formula

a(n) = 2 + ceiling((n^2 - n)/3) for n >= 2. - Robert Israel, May 20 2014