cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097926 Number of (n,4) Freiman-Wyner sequences.

Original entry on oeis.org

18, 36, 70, 134, 258, 498, 960, 1850, 3566, 6874, 13250, 25540, 49230, 94894, 182914, 352578, 679616, 1310002, 2525110, 4867306, 9382034, 18084452, 34858902, 67192694, 129518082, 249654130, 481223808, 927588714, 1787984734, 3446451386
Offset: 5

Views

Author

N. J. A. Sloane, Sep 05 2004

Keywords

Comments

"The values for n <= 4 are straightforward."

References

  • I. F. Blake, The enumeration of certain run length sequences, Information and Control, 55 (1982), 222-237.

Crossrefs

Programs

  • Maple
    A097926 := proc(nmax) local a,n,k; k := 4 ; a := [18,36,70,134,258] ; while nops(a) < nmax do n := nops(a)+k+1 ; a := [op(a),2*op(n-1-k,a)-op(n-2*k-1,a) ] ; od ; end: nmax := 30 ; a := A097926(nmax) ; for i from 1 to nmax do printf("%d,",op(i,a)) ; od: # R. J. Mathar, Oct 31 2006
  • Mathematica
    LinearRecurrence[{1,1,1,1},{18,36,70,134},30] (* Harvey P. Dale, Jun 06 2022 *)

Formula

a(n) = 2a(n-1) - a(n-k-1), k=4, n >= 2k+2. - R. J. Mathar, Oct 31 2006
G.f.: -2*(5*x^3+8*x^2+9*x+9)*x^5/(x^4+x^3+x^2+x-1) = -10*x^4-6*x^3-2*x^2-2+(-2*x^3-2+2*x)/(x^4+x^3+x^2+x-1). - R. J. Mathar, Nov 18 2007

Extensions

Corrected and extended by R. J. Mathar, Oct 31 2006