A097926 Number of (n,4) Freiman-Wyner sequences.
18, 36, 70, 134, 258, 498, 960, 1850, 3566, 6874, 13250, 25540, 49230, 94894, 182914, 352578, 679616, 1310002, 2525110, 4867306, 9382034, 18084452, 34858902, 67192694, 129518082, 249654130, 481223808, 927588714, 1787984734, 3446451386
Offset: 5
Keywords
References
- I. F. Blake, The enumeration of certain run length sequences, Information and Control, 55 (1982), 222-237.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1).
Programs
-
Maple
A097926 := proc(nmax) local a,n,k; k := 4 ; a := [18,36,70,134,258] ; while nops(a) < nmax do n := nops(a)+k+1 ; a := [op(a),2*op(n-1-k,a)-op(n-2*k-1,a) ] ; od ; end: nmax := 30 ; a := A097926(nmax) ; for i from 1 to nmax do printf("%d,",op(i,a)) ; od: # R. J. Mathar, Oct 31 2006
-
Mathematica
LinearRecurrence[{1,1,1,1},{18,36,70,134},30] (* Harvey P. Dale, Jun 06 2022 *)
Formula
a(n) = 2a(n-1) - a(n-k-1), k=4, n >= 2k+2. - R. J. Mathar, Oct 31 2006
G.f.: -2*(5*x^3+8*x^2+9*x+9)*x^5/(x^4+x^3+x^2+x-1) = -10*x^4-6*x^3-2*x^2-2+(-2*x^3-2+2*x)/(x^4+x^3+x^2+x-1). - R. J. Mathar, Nov 18 2007
Extensions
Corrected and extended by R. J. Mathar, Oct 31 2006
Comments