A097959 Primes p such that p divides 6^((p-1)/2) - 5^((p-1)/2).
7, 13, 17, 19, 29, 37, 71, 83, 101, 103, 107, 113, 127, 137, 139, 149, 157, 191, 211, 223, 227, 233, 239, 241, 257, 269, 277, 311, 331, 347, 353, 359, 367, 373, 379, 389, 397, 409, 431, 443, 461, 463, 467, 479, 487, 499, 509, 563, 571, 587, 593, 599, 601, 607
Offset: 1
Examples
7 is a term since it is a prime and 6^((7-1)/2) - 5^((7-1)/2) = 6^3 - 5^3 = 91 = 7*13 is divisible by 7.
Links
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[200]],Divisible[6^((#-1)/2)-5^((#-1)/2),#]&] (* Harvey P. Dale, Jun 06 2018 *) Select[Range[3, 600, 2], PrimeQ[#] && PowerMod[5, (# - 1)/2, #] == PowerMod[6, (# - 1)/2, #] &] (* Amiram Eldar, Apr 07 2021 *)
-
PARI
\\ s = +-1, d=diff ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p","))) } ptopm1d2(1000, 6, 1, -1)
-
PARI
isA097959(p) == isprime(p) && kronecker(30, p) == 1 \\ Jianing Song, Oct 13 2022
Extensions
Definition clarified by Harvey P. Dale, Jun 06 2018
Comments