A097968 Consider the succession of single digits of the positive even integers: 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 ... (A036211). This sequence is the lexicographically earliest sequence of distinct positive odd integers that produces the same succession of digits.
2468101, 21, 41, 61, 82022242628303, 23, 43, 63, 84042444648505, 25, 45, 65, 86062646668707, 27, 47, 67, 88082848688909, 29, 49, 69, 81001021041061081, 101, 1, 211, 411, 611, 81, 201, 221, 241, 261, 281, 301, 3, 213, 413, 613, 81401, 421, 441
Offset: 1
Examples
We must begin with "2,4,6..." and we cannot use "2" or "24" or "246" (only odd terms are available), so the first possibility is "2468101". We could not have used "24681" since no term begins with a 0.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Eric Angelini, Jeux de suites, in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
Programs
-
Mathematica
f[lst_List, k_] := Block[{L = lst, g, w, a = {}, m}, g[x_] := First@ FirstPosition[x, i_ /; OddQ@ i]; Do[w = Take[L, g@ L]; L = Drop[L, Length@ w]; m = Take[L, g@ L]; While[Or[MemberQ[a, FromDigits@ w], IntegerLength@ FromDigits@ m < Length@ m], w = Join[w, m]; L = Drop[L, Length@ m]; m = Take[L, g@ L]]; AppendTo[a, FromDigits@ w], {k}]; a]; f[Flatten@ Map[IntegerDigits, 2 Range@ 80], 40] (* Michael De Vlieger, Nov 28 2015, Version 10 *)
Extensions
Name and Example edited by Danny Rorabaugh, Nov 28 2015
Comments