A097973 Least m>p such that p|m, p+1|m+1 and p+2|m+2, for twin prime pairs (p, p+2), p in A001359.
63, 215, 1727, 5831, 26999, 74087, 215999, 373247, 1061207, 1259711, 2628071, 3374999, 5831999, 7077887, 7762391, 11852351, 13823999, 19682999, 22425767, 30371327, 42144191, 74087999, 80621567, 98611127, 142236647, 185192999
Offset: 1
Keywords
Examples
The triple {a(6), a(6)+1, a(6)+2}, for instance, i.e., (74087=41*1807, 74088=42*1764, 74089=43*1723) is the smallest one whose elements are respectively divisible by those of (41, 42, 43), (41, 43) being the 6th twin prime pair.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
map(t -> (t+1)^3-1, select(t -> isprime(t) and isprime(t+2), [3,seq(i,i=5..10^4,6)])); # Robert Israel, May 16 2018