A097978 a(n) = least m such that m and m+n are both products of exactly n distinct primes.
1, 2, 33, 102, 1326, 115005, 31295895, 159282123, 9617162170, 1535531452026, 1960347077019695, 16513791577659519, 271518698440871310
Offset: 0
Examples
a(2) = 33 because 33 and 35 are both in A006881. a(3) = 102 because 102 and 105 are both in A007304. a(4) = 1326 because 1326 and 1330 are both in A046386.
Programs
-
Mathematica
f[n_] := Block[{lst = FactorInteger[n], a, b}, a = Plus @@ Last /@ lst; b = Length[lst]; If[a == b, b, 0]]; g[n_] := Block[{k = Product[ Prime[i], {i, n}]}, While[ f[k] != n || f[k] != f[k + n], k++ ]; k]; Do[ Print[ g[n]], {n, 1, 6}] (* Robert G. Wilson v, Sep 11 2004 *)
Formula
a(n) = min{m: A001221(m) = A001222(m) = A001221(m+n) = A001222(m+n)= n}. - R. J. Mathar, Mar 01 2017
Extensions
Edited and extended by Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 08 2004
More terms from David Wasserman, Feb 19 2008
Comments