cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097982 Numbers n such that (phi(n) + sigma(n))/(rad(n))^2 is an integer > 1 (phi=A000010, sigma=A000203, rad=A007947).

Original entry on oeis.org

1, 864, 2430, 7776, 27000, 55296, 69984, 82134, 215622, 432000, 497664, 629856, 675000, 862488, 1499136, 1749600, 2187000, 2667168, 3449952, 3538944, 4287500, 4312440, 4478976, 4563000, 5668704, 6912000, 10800000, 13045131, 13799808, 16875000, 18670176, 19773000
Offset: 1

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Examples

			For example: 864 is a term since phi(864) = 288, sigma(864) = 2520, 864 = 2^5*3^3, (288+2520)/6^2 = 78.
		

References

  • J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 749, pp. 95, 319, Ellipses, Paris, 2004.

Crossrefs

Subsequence of A121850.

Programs

  • Mathematica
    f[n_] := (DivisorSigma[1, n] + EulerPhi[n])/(Times @@ Transpose[FactorInteger[n]][[1]])^2; Do[ If[IntegerQ[f[n] && f[n] != 1], Print[n]], {n, 1, 1000000}] (* Tanya Khovanova, Aug 30 2006 *)
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p - 1)*p^(e - 1); q[1] = True; q[n_] := IntegerQ[(r = (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/ (Times @@ First /@ f)^2)] && r > 1; Select[Range[10^5], q] (* Amiram Eldar, Dec 04 2020 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    is(n)=my(t=(eulerphi(n)+sigma(n))/rad(n)^2);denominator(t)==1 && t>1 \\ Charles R Greathouse IV, Feb 19 2013

Extensions

More terms from Tanya Khovanova, Aug 30 2006
a(15)-a(29) from Donovan Johnson, Feb 05 2010
a(1)=1 and a(30)-a(32) added by Amiram Eldar, Dec 04 2020