A097994 T(n,k) counts plane partitions of n that can be 'extended' in (k+2) ways to a plane partition of n+1 by adding 1 element to it. Equivalently, it counts how many partitions of n have (k+2) different partitions of n+1 just covering it.
1, 3, 0, 3, 3, 0, 6, 6, 0, 1, 3, 15, 3, 3, 0, 9, 21, 6, 12, 0, 0, 3, 34, 21, 25, 3, 0, 0, 10, 45, 36, 54, 15, 0, 0, 0, 6, 54, 72, 108, 36, 6, 0, 0, 0, 9, 84, 102, 172, 117, 15, 0, 1, 0, 0, 3, 84, 174, 306, 228, 54, 7, 3, 0, 0, 0, 18, 114, 225, 483, 447, 162, 18, 12, 0, 0, 0, 0, 3, 114
Offset: 1
Examples
T(4,4)=1 because {{2,1},{1}} is the only plane partition of 4 that can be extended in 4+2 = 6 ways to a plane partition of 5.
Programs
-
Mathematica
(* functions 'planepartitions' and 'coversplaneQ', see A096574 *) Table[Frequencies[Count[planepartitions[n+1], q_/; coversplaneQ[q, # ]]&/@ planepartitions[n]], {n, 1, 16}]
Comments