cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098018 a(n) = Sum_{k|n, k>=2} mu(k-1), where mu() is the Moebius function.

Original entry on oeis.org

0, 1, -1, 0, 0, -1, 1, -1, -1, 1, 1, -3, 0, 1, 0, 0, 0, -2, 0, -1, 0, 3, 1, -5, 0, 1, 0, 0, 0, -1, -1, -1, 0, 2, 2, -3, 0, 0, 0, -1, 0, -2, -1, 1, 0, 2, 1, -5, 1, 1, -1, 1, 0, -2, 1, 0, -1, 2, 1, -5, 0, -1, 1, -1, 0, 2, -1, 0, 0, 3, -1, -6, 0, 0, 1, -1, 2, 1, -1, -1, 0, 1, 1, -5, 0, 1, 0, 1, 0, -3, 1, 2, -2, 3, 1, -5, 0, 0, 0, -1, 0, -1, -1, -1, 2
Offset: 1

Views

Author

Leroy Quet, Oct 24 2004

Keywords

Examples

			12's divisors >=2 are 2, 3, 4, 6 and 12. So a(12) = mu(1) + mu(2) + mu(3) + mu(5) + mu(11) = 1 - 1 - 1 - 1 - 1 = -3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ MoebiusMu[ Drop[ Divisors[n], 1] - 1]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Nov 01 2004 *)
    Table[DivisorSum[n, MoebiusMu[# - 1] &, # > 1 &], {n, 105}] (* Michael De Vlieger, Sep 04 2017 *)
  • PARI
    a(n)=sumdiv(n,k,if(k>1,moebius(k-1))) \\ Charles R Greathouse IV, Feb 07 2013

Extensions

More terms from Robert G. Wilson v, Nov 01 2004