cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A098869 Where A098018(k)=n.

Original entry on oeis.org

2, 34, 22, 238, 506, 945, 1190, 4725, 5474, 6615, 27370, 32175, 46305, 46410, 78936, 158746, 211120, 135135, 139230, 773955, 569400, 867510, 1309620, 675675, 2277600, 3374800, 3759210, 2619240, 4729725, 6721704, 2753660, 8622900
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Nov 03 2004

Keywords

Comments

k is the first occurrence of n in A098018.

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ MoebiusMu[ Drop[ Divisors[n], 1] - 1]; t = Table[0, {100}]; Do[ a = f[n]; If[Positive[a] && a < 101 && t[[a]] == 0, t[[a]] = n], {n, }]; t

A098874 Where A098018(k)=-n.

Original entry on oeis.org

3, 18, 12, 108, 24, 72, 168, 384, 360, 456, 720, 1824, 1368, 3192, 19260, 6840, 13680, 21000, 80940, 9576, 50616, 39120, 220248, 167808, 264264, 193800, 242820, 181944, 117360, 424080, 456456, 848160, 124488, 2756520, 1618344, 3269112, 2229840
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Nov 03 2004

Keywords

Comments

k is the first occurrence of -n in A098018.

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ MoebiusMu[ Drop[ Divisors[n], 1] - 1]; s = Table[0, {100}]; Do[ a = f[n]; If[ !Positive[a] && a > -101 && s[[ -a]] == 0, s[[ -a]] = n], {n, }]; s

A098868 Numbers n where A098018(n)=0.

Original entry on oeis.org

1, 4, 5, 13, 15, 16, 17, 19, 21, 25, 27, 28, 29, 33, 37, 38, 39, 41, 45, 53, 56, 61, 65, 68, 69, 73, 74, 81, 85, 87, 89, 97, 98, 99, 101, 106, 109, 113, 115, 117, 123, 125, 127, 137, 140, 141, 145, 149, 151, 157, 159, 163, 169, 172, 173, 174, 177, 181, 182, 185, 187
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Nov 03 2004

Keywords

Crossrefs

Cf. A098018.

Programs

  • Mathematica
    f[n_] := Plus @@ MoebiusMu[ Drop[ Divisors[n], 1] - 1]; Select[ Range[ 192], f[ # ] == 0 &]

A098035 a(n) = Sum_{d|n} mu(d+1), where mu() is the Moebius function.

Original entry on oeis.org

-1, -2, -1, -3, 0, -3, -1, -3, 0, -2, -1, -5, 0, -1, 0, -4, -1, -3, -1, -2, 0, -3, -1, -5, 1, -1, 0, -3, -2, -4, -1, -3, 0, -1, 0, -6, 0, -1, 0, -3, -2, -2, -1, -4, 2, -3, -1, -6, -1, 0, -1, -3, -1, -2, 0, -2, 0, -4, -1, -6, 0, -2, 1, -2, 0, -4, -1, -1, -2, -2, -1, -7, 0, -1, 1, -1, -2, -3, -1, -4, 1, -4, -1, -4, 1, -1, -2, -5, -1, -2, 0, -3, 0, -1
Offset: 1

Views

Author

Leroy Quet, Oct 24 2004

Keywords

Examples

			The divisors of 12 are 1, 2, 3, 4, 6 and 12. So a(12) = mu(2) + mu(3) + mu(4) + mu(5) + mu(7) + mu(13) = -1 - 1 + 0 - 1 - 1 - 1 = -5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ MoebiusMu[Divisors[n] + 1]; Table[ a[n], {n, 105}] (* Robert G. Wilson v, Nov 01 2004 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d+1)); \\ Amiram Eldar, Jun 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 01 2004

A332509 a(n) = Sum_{k=1..n} mu(floor(n/k)), where mu = A008683.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 3, 2, 1, 4, 4, 3, 3, 3, 3, 5, 5, 6, 6, 3, 2, 7, 7, 6, 6, 6, 6, 7, 8, 9, 9, 7, 5, 8, 8, 8, 8, 9, 9, 11, 12, 11, 11, 9, 8, 13, 12, 11, 12, 11, 11, 13, 12, 12, 13, 11, 10, 15, 15, 16, 15, 16, 16, 14, 15, 15, 15, 12, 13, 19, 19, 19, 18, 19, 17, 16, 17, 18, 18, 17, 16, 21, 21
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[Floor[n/k]], {k, 1, n}], {n, 1, 85}]
    Table[1 - Sum[DivisorSum[k, MoebiusMu[# - 1] &, # > 1 &], {k, 1, n}], {n, 1, 85}]
    nmax = 85; CoefficientList[Series[(1/(1 - x)) (x - Sum[MoebiusMu[k - 1] x^k/(1 - x^k), {k, 2, nmax}]), {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, moebius(n\k)); \\ Michel Marcus, Feb 14 2020

Formula

G.f.: (1/(1 - x)) * (x - Sum_{k>=2} mu(k-1) * x^k / (1 - x^k)).
a(n) = 1 - Sum_{k=1..n} Sum_{d|k, d > 1} mu(d-1) for n > 0.
Sum_{k=1..n-1} mu(k) * a(floor(n/k)) = 0.
Showing 1-5 of 5 results.