cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098991 Numbers n where A098035(n)=0.

Original entry on oeis.org

5, 9, 13, 15, 21, 27, 33, 35, 37, 39, 50, 55, 57, 61, 65, 73, 91, 93, 95, 111, 114, 115, 121, 122, 133, 141, 143, 145, 147, 155, 157, 170, 177, 183, 185, 189, 193, 195, 201, 205, 209, 213, 215, 217, 219, 231, 235, 247, 253, 259, 261, 277, 285, 295, 299, 301, 313
Offset: 1

Views

Author

Leroy Quet and Robert G. Wilson v, Nov 05 2004

Keywords

Crossrefs

Cf. A098035.

Programs

  • Mathematica
    f[n_] := Plus @@ MoebiusMu[Divisors[n] + 1]; Select[ Range[319], f[ # ] == 0 &]
  • PARI
    a(n) = sumdiv(n, k, moebius(k + 1));
    for(n=1, 320, if(a(n) == 0, print1(n,", "))) \\ Indranil Ghosh, Mar 16 2017

Formula

Sum_{k|n} mu(k+1), where mu() is Moebius function.

A098018 a(n) = Sum_{k|n, k>=2} mu(k-1), where mu() is the Moebius function.

Original entry on oeis.org

0, 1, -1, 0, 0, -1, 1, -1, -1, 1, 1, -3, 0, 1, 0, 0, 0, -2, 0, -1, 0, 3, 1, -5, 0, 1, 0, 0, 0, -1, -1, -1, 0, 2, 2, -3, 0, 0, 0, -1, 0, -2, -1, 1, 0, 2, 1, -5, 1, 1, -1, 1, 0, -2, 1, 0, -1, 2, 1, -5, 0, -1, 1, -1, 0, 2, -1, 0, 0, 3, -1, -6, 0, 0, 1, -1, 2, 1, -1, -1, 0, 1, 1, -5, 0, 1, 0, 1, 0, -3, 1, 2, -2, 3, 1, -5, 0, 0, 0, -1, 0, -1, -1, -1, 2
Offset: 1

Views

Author

Leroy Quet, Oct 24 2004

Keywords

Examples

			12's divisors >=2 are 2, 3, 4, 6 and 12. So a(12) = mu(1) + mu(2) + mu(3) + mu(5) + mu(11) = 1 - 1 - 1 - 1 - 1 = -3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ MoebiusMu[ Drop[ Divisors[n], 1] - 1]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Nov 01 2004 *)
    Table[DivisorSum[n, MoebiusMu[# - 1] &, # > 1 &], {n, 105}] (* Michael De Vlieger, Sep 04 2017 *)
  • PARI
    a(n)=sumdiv(n,k,if(k>1,moebius(k-1))) \\ Charles R Greathouse IV, Feb 07 2013

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
Showing 1-2 of 2 results.