cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098047 Numbers not in A098006.

Original entry on oeis.org

5, 20, 21, 22, 24, 28, 31, 33, 34, 36, 37, 38, 43, 45, 46, 48, 51, 52, 55, 58, 61, 67, 69, 70, 73, 79, 80, 82, 87, 88, 91, 97, 99, 100, 104, 106, 108, 112, 115, 117, 118, 123, 124, 127, 130, 132, 136, 138, 142, 145, 147, 148, 151, 152, 154, 156, 157, 159, 163, 166, 172
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2004

Keywords

Comments

In the Luca-Walsh paper it is shown that this sequence is infinite.
It can be shown that if a number k > 8, k not a power of 2, is in A098006, then k first appears for a prime p <= 1+k^2. For example, 26 first appears as A098006(123). The 123rd prime is 677, which equals 1+26^2. When this worst-case behavior occurs, then k/2 is a prime in A052291 and the corresponding 1+k^2 is in A052292. - T. D. Noe, Nov 13 2007
Banks and Luca (2004, 2005) called these numbers Robbins numbers. They proved that the lower asymptotic density of this sequence is > 1/3. - Amiram Eldar, Feb 13 2021

Crossrefs

Cf. A098006.

Programs

  • Mathematica
    t = Table[0, {200}]; Do[p = Prime[n]; a = (p - 1)/2 - EulerPhi[p - 1]; If[p < 201, t[[a]]++ ], {n, 2, 10^7}]; u = Table[ If[ t[[n]] != 0, n, 0], {n, 1, 200}]; Complement[ Range[200], u]