A098047 Numbers not in A098006.
5, 20, 21, 22, 24, 28, 31, 33, 34, 36, 37, 38, 43, 45, 46, 48, 51, 52, 55, 58, 61, 67, 69, 70, 73, 79, 80, 82, 87, 88, 91, 97, 99, 100, 104, 106, 108, 112, 115, 117, 118, 123, 124, 127, 130, 132, 136, 138, 142, 145, 147, 148, 151, 152, 154, 156, 157, 159, 163, 166, 172
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- William D. Banks and Florian Luca, Noncototients and Nonaliquots, arXiv:math/0409231 [math.NT], 2004.
- William D. Banks and Florian Luca, Nonaliquots and Robbins numbers, Colloq. Math., Vol. 103, No. 1 (2005), pp. 27-32.
- Florian Luca and P. G. Walsh, On the number of nonquadratic residues which are not primitive roots, Colloq. Math., Vol. 100, No. 1 (2004), pp. 91-93.
- T. D. Noe, Finding primes for which (p-1)/2 - phi(p-1) = k.
- Neville Robbins, Problem 002:18, Western Number Theory Problems, 16 & 19 Dec 2002. See p. 8; Florian Luca and Gary Wals, Solution, Western Number Theory Problems, 17 & 19 Dec 2004. See p. 2.
Crossrefs
Cf. A098006.
Programs
-
Mathematica
t = Table[0, {200}]; Do[p = Prime[n]; a = (p - 1)/2 - EulerPhi[p - 1]; If[p < 201, t[[a]]++ ], {n, 2, 10^7}]; u = Table[ If[ t[[n]] != 0, n, 0], {n, 1, 200}]; Complement[ Range[200], u]
Comments