A098057 Number of peakless Motzkin paths with no U H^j U, no D H^j D and no D H^jU (j>0), where U=(1,1), D=(1,-1) and H=(1,0) (can be easily expressed using RNA secondary structure terminology).
1, 1, 1, 2, 4, 8, 15, 27, 48, 84, 147, 257, 451, 796, 1413, 2526, 4544, 8226, 14978, 27417, 50434, 93183, 172865, 321857, 601263, 1126644, 2116968, 3987960, 7530200, 14249649, 27019301, 51327965, 97676156, 186177568, 355406479, 679425009
Offset: 0
Keywords
Examples
a(4)=4 because we have HHHH, UHDU, HUHD and UHHD; a(6)=15 because from all 17 peakless Motzkin paths of length 6 (see A004148) only (UHU)HDD and UUH(DHD) do not qualify.
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86.
Crossrefs
Cf. A004148.
Formula
G.f.: [1-z+z^2-4z^3+2z^4-sqrt(1-2z-z^2+2z^3+z^4-4z^5+4z^6)]/[2z^2*(1-z)^3].
D-finite with recurrence (n+2)*a(n) +(-5*n-7)*a(n-1) +2*(4*n+5)*a(n-2) +(-2*n-13)*a(n-3) +3*(-2*n+5)*a(n-4) +18*(1)*a(n-5) +(17*n-101)*a(n-6) +(-25*n+154)*a(n-7) +2*(8*n-53)*a(n-8) +4*(-n+7)*a(n-9)=0. - R. J. Mathar, Jul 26 2022