A098070 Consider a single king on an infinite chessboard. This sequence gives number of n-move paths when king starting at origin reaches the origin again for the first time at step n.
1, 0, 8, 24, 152, 816, 5320, 33840, 229144, 1560864, 10906576, 76962912, 550406472, 3969725856, 28875757200, 211436151456, 1557623566104, 11533972310976, 85802992349344, 640901090847360, 4804716170926672, 36138383022850368, 272621594933332000
Offset: 0
Keywords
Examples
From _Jesiah Darnell_, Sep 22 2023: (Start) A094061(4) - (a(1)a(3)*2 + a(2)*a(2)*1) = 216 - (0 + 64) = 152, so a(4) = 152. A094061(7) - (a(1)a(6)*2 + a(2)*a(2)*a(3)*3 + a(2)*a(5)*2 + a(4)*a(3)*2) = 58800 - (0 + 4608 + 13056 + 7296) = 33840, so a(7) = 33840. (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (terms 0..350 from Alois P. Heinz)
Programs
-
Maple
G:=t->2-Pi*(1+4*t)/2/EllipticK(4*sqrt(t*(1+t))/(1+4*t)); Gf:=convert(series(G(t),t,30),polynom): seq(print(i,coeff(Gf,t,i)),i=0..degree(Gf));
-
Mathematica
CoefficientList[Series[2-Pi/2*(1+4*x)/EllipticK[16*x*(1+x)/(1+4*x)^2],{x,0,22}],x] (* Vaclav Kotesovec, Mar 10 2014 *)
Formula
G.f.: 2-Pi/2*(1+4*x)/EllipticK(4*sqrt(x*(1+x))/(1+4*x)), (Maple notation).
G.f.: 2 - AGM(sqrt(1 - 8*x), 1 + 4*x). - Vaclav Kotesovec, Sep 30 2019
a(n) ~ 3*Pi*2^(3*n-1) / (n*log(n)^2) * (1 - 2*(gamma + 2*log(2) + 2*log(3)) / log(n) + (3*gamma^2 + 12*log(2)*gamma + 12*gamma*log(3) + 24*log(2)*log(3) + 12*log(2)^2 + 12*log(3)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 30 2019
G.f.: 2 - 1/B(x) where B(x) is the g.f. of A094061. - Jesiah Darnell, Sep 22 2023
Comments