cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098070 Consider a single king on an infinite chessboard. This sequence gives number of n-move paths when king starting at origin reaches the origin again for the first time at step n.

Original entry on oeis.org

1, 0, 8, 24, 152, 816, 5320, 33840, 229144, 1560864, 10906576, 76962912, 550406472, 3969725856, 28875757200, 211436151456, 1557623566104, 11533972310976, 85802992349344, 640901090847360, 4804716170926672, 36138383022850368, 272621594933332000
Offset: 0

Views

Author

Sergey Perepechko, Sep 13 2004

Keywords

Comments

Traditionally for the "first passage time" problems use initial condition Gf(0)=0, but here we define Gf(0)=1 to make this sequence consistent with similar sequences already present in the database.

Examples

			From _Jesiah Darnell_, Sep 22 2023: (Start)
A094061(4) - (a(1)a(3)*2 + a(2)*a(2)*1) = 216 - (0 + 64) = 152, so a(4) = 152.
A094061(7) - (a(1)a(6)*2 + a(2)*a(2)*a(3)*3 + a(2)*a(5)*2 + a(4)*a(3)*2) = 58800 - (0 + 4608 + 13056 + 7296) = 33840, so a(7) = 33840. (End)
		

Crossrefs

Programs

  • Maple
    G:=t->2-Pi*(1+4*t)/2/EllipticK(4*sqrt(t*(1+t))/(1+4*t)); Gf:=convert(series(G(t),t,30),polynom): seq(print(i,coeff(Gf,t,i)),i=0..degree(Gf));
  • Mathematica
    CoefficientList[Series[2-Pi/2*(1+4*x)/EllipticK[16*x*(1+x)/(1+4*x)^2],{x,0,22}],x] (* Vaclav Kotesovec, Mar 10 2014 *)

Formula

G.f.: 2-Pi/2*(1+4*x)/EllipticK(4*sqrt(x*(1+x))/(1+4*x)), (Maple notation).
G.f.: 2 - AGM(sqrt(1 - 8*x), 1 + 4*x). - Vaclav Kotesovec, Sep 30 2019
a(n) ~ 3*Pi*2^(3*n-1) / (n*log(n)^2) * (1 - 2*(gamma + 2*log(2) + 2*log(3)) / log(n) + (3*gamma^2 + 12*log(2)*gamma + 12*gamma*log(3) + 24*log(2)*log(3) + 12*log(2)^2 + 12*log(3)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 30 2019
G.f.: 2 - 1/B(x) where B(x) is the g.f. of A094061. - Jesiah Darnell, Sep 22 2023