cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098075 Threefold convolution of A004148 (the RNA secondary structure numbers) with itself.

Original entry on oeis.org

1, 3, 6, 13, 30, 69, 160, 375, 885, 2102, 5022, 12060, 29095, 70485, 171399, 418220, 1023663, 2512761, 6184253, 15257262, 37725972, 93477778, 232069116, 577179078, 1437926977, 3587977293, 8966170056, 22437282917, 56221762626, 141051397725
Offset: 0

Views

Author

Emeric Deutsch, Sep 13 2004

Keywords

Crossrefs

Cf. A004148.

Programs

  • Maple
    a:=proc(n) if n=0 then 1 else 3*sum(binomial(k,n-k)*binomial(k+2,3+n-k)/k,k=ceil((n+1)/2)..n) fi end: seq(a(n),n=0..30);

Formula

a(n) = 3*Sum_{k=ceiling((n+1)/2)..n} binomial(k, n-k)*binomial(k+2, 3+n-k)/k, n >= 1, a(0)=1.
G.f.: f^3, where f = (1 - z + z^2 - sqrt(1 - 2*z - z^2 - 2*z^3 + z^4))/(2z^2) is the g.f. of A004148.
a(n) ~ 3 * 5^(1/4) * phi^(2*n+6) / (2 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence n^2*(n+6)*a(n) -n*(2*n+5)*(n+2)*a(n-1) -(n+1)*(n^2+2*n-16)*a(n-2) -n*(n+2)*(2*n-1)*a(n-3) +(n-4)*(n+2)^2*a(n-4)=0. - R. J. Mathar, Jul 24 2022