A098075 Threefold convolution of A004148 (the RNA secondary structure numbers) with itself.
1, 3, 6, 13, 30, 69, 160, 375, 885, 2102, 5022, 12060, 29095, 70485, 171399, 418220, 1023663, 2512761, 6184253, 15257262, 37725972, 93477778, 232069116, 577179078, 1437926977, 3587977293, 8966170056, 22437282917, 56221762626, 141051397725
Offset: 0
Keywords
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86.
Crossrefs
Cf. A004148.
Programs
-
Maple
a:=proc(n) if n=0 then 1 else 3*sum(binomial(k,n-k)*binomial(k+2,3+n-k)/k,k=ceil((n+1)/2)..n) fi end: seq(a(n),n=0..30);
Formula
a(n) = 3*Sum_{k=ceiling((n+1)/2)..n} binomial(k, n-k)*binomial(k+2, 3+n-k)/k, n >= 1, a(0)=1.
G.f.: f^3, where f = (1 - z + z^2 - sqrt(1 - 2*z - z^2 - 2*z^3 + z^4))/(2z^2) is the g.f. of A004148.
a(n) ~ 3 * 5^(1/4) * phi^(2*n+6) / (2 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 29 2022
D-finite with recurrence n^2*(n+6)*a(n) -n*(2*n+5)*(n+2)*a(n-1) -(n+1)*(n^2+2*n-16)*a(n-2) -n*(n+2)*(2*n-1)*a(n-3) +(n-4)*(n+2)^2*a(n-4)=0. - R. J. Mathar, Jul 24 2022