A104007
Denominators of coefficients in expansion of x^2*(1-exp(-2*x))^(-2).
Original entry on oeis.org
4, 2, 12, 6, 60, 90, 378, 945, 2700, 9450, 20790, 93555, 116093250, 638512875, 1403325, 18243225, 43418875500, 325641566250, 4585799468250, 38979295480125, 161192575293750, 1531329465290625, 640374140030625, 13447856940643125, 17558223649022306250
Offset: 0
See
A098087 for further information.
-
Denominator[ CoefficientList[ Series[x^2*(1 - E^(-2x))^(-2), {x, 0, 33}], x]] (* Robert G. Wilson v, Apr 20 2005 *)
Denominator[
Function[{n},
Piecewise[{{1/2 (-1 + n) Zeta[n], Mod[n, 2] == 0}, {Zeta[-1 + n],
Mod[n, 2] == 1}}]] /@ Range[0, 20]] (* Andrey Mitin, Aug 16 2020 *)
A231273
Numerator of zeta(4n)/(zeta(2n) * Pi^(2n)).
Original entry on oeis.org
1, 1, 1, 691, 3617, 174611, 236364091, 3392780147, 7709321041217, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 5609403368997817686249127547, 61628132164268458257532691681, 354198989901889536240773677094747
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, 1960, p. 255.
Cf.
A231327 (corresponding denominator).
-
seq(numer((-1)^n*bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
-
Numerator[Table[Zeta[4n]/(Zeta[2n] * Pi^(2n)), {n, 0, 15}]] (* T. D. Noe, Nov 18 2013 *)
A231327
Denominator of rational component of zeta(4n)/zeta(2n).
Original entry on oeis.org
1, 15, 105, 675675, 34459425, 16368226875, 218517792968475, 30951416768146875, 694097901592400930625, 23383376494609715287281703125, 2289686345687357378035370971875, 219012470258383844016431785453125, 4791965046290912124048163518904807546875
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
Cf.
A231273 (the corresponding numerator).
-
seq(denom(bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
-
Denominator[Table[Zeta[4 n]/Zeta[2 n], {n, 0, 15}]] (* T. D. Noe, Nov 15 2013 *)
Showing 1-3 of 3 results.
Comments