A098099 Consider the succession of single digits of the positive odd integers: 1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 ... (A031312). This sequence is the lexicographically earliest sequence of distinct positive even integers that produces the same succession of digits.
1357911131517192, 12, 32, 52, 72, 931333537394, 14, 34, 54, 74, 951535557596, 16, 36, 56, 76, 971737577798, 18, 38, 58, 78, 9919395979910, 110, 310, 510, 710, 911111311511711912, 112, 312, 512, 712, 913113313513713914, 114, 314, 514, 714
Offset: 1
Examples
We must begin with "1,3,5..." and we cannot use "1" or "13" or "135" (only even terms are available), so the first possibility is "1357911131517192". For "199,201,203..." we won't be allowed to use "1992", for instance, since no term begins with a 0.
References
- E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[lst_List, k_] := Block[{L = lst, g, w, a = {}, m}, g[x_] := First@ FirstPosition[x, i_ /; EvenQ@ i]; Do[w = Take[L, g@ L]; L = Drop[L, Length@ w]; m = Take[L, g@ L]; While[Or[MemberQ[a, FromDigits@ w], IntegerLength@ FromDigits@ m < Length@ m], w = Join[w, m]; L = Drop[L, Length@ m]; m = Take[L, g@ L]]; AppendTo[a, FromDigits@ w], {k}]; a]; f[Flatten@ Map[IntegerDigits, Range[1, 1000, 2]], 35] (* Michael De Vlieger, Nov 28 2015, Version 10 *)
Extensions
Name and Example edited by Danny Rorabaugh, Nov 28 2015
Comments