cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098109 a(n) is the least number k such that the number of divisors of k! exceeds 10^n.

Original entry on oeis.org

5, 9, 13, 17, 23, 29, 34, 40, 46, 53, 59, 67, 73, 79, 87, 95, 103, 109, 116, 127, 134, 141, 150, 158, 167, 175, 182, 193, 199, 210, 218, 227, 234, 242, 254, 263, 271, 281, 290, 301, 311, 317, 329, 337, 349, 358, 367, 379, 387, 397, 406, 418, 427, 436, 446, 455
Offset: 1

Views

Author

Jeff Burch, Sep 23 2004

Keywords

Crossrefs

Cf. A027423.

Programs

  • Maple
    # multiply two ifactor representations [p1,e1],[p2,e2],[p3,e2]
    mulif := proc(if1, if2)
        local ifr,t,p,e,ix,ifi ;
        ifr := if1 ;
        for t in if2 do
            p := op(1,t) ;
            e := op(2,t) ;
            ix := 0 ;
            for ifi from 1 to nops(ifr) do
                if op(1,op(ifi,ifr)) = p then
                    ix := ifi;
                    break;
                end if;
            end do:
            if ix = 0 then
                ifr := [op(ifr),[p,e]] ;
            else
                e := e+op(2,op(ix,ifr)) ;
                ifr := subsop(ix=[p,e],ifr) ;
            end if;
        end do:
        return ifr ;
    end proc:
    # tau(iff) using multiplicative property of tau
    tauif := proc(iff)
        local r;
        r := 1 ;
        for t in iff do
            r := r*(1+op(2,t)) ;
        end do:
        return r;
    end proc:
    # ifactor representation of m!
    iffact := proc(m)
        local r,f ;
        if m <=1 then
            return [] ;
        else
            r := [[2,1]] ;
            for f from 3 to m do
                ifmf := ifactors(f)[2] ;
                r := mulif(r,ifmf) ;
            end do:
            return r;
        end if:
    end proc:
    A027423 := proc(n)
        iffact(n) ;
        tauif(%) ;
    end proc:
    A098109 := proc(n)
        local m ;
        for m from 2 do
            if A027423(m) > 10^n then
                return m;
            end if;
        end do:
    end proc:
    for n from 1 do
        print(A098109(n)) ;
    end do: # R. J. Mathar, Nov 19 2011
  • PARI
    A027423(n) = {my(prd = 1); forprime(p = 2, n, prd *= (1 + (n - sumdigits(n, p))/(p-1))); prd;}
    list(lim) = {my(pow = 10); for(k = 1, lim, if(A027423(k) > pow, print1(k, ", "); pow * = 10));} \\ Amiram Eldar, Feb 03 2025