A098109 a(n) is the least number k such that the number of divisors of k! exceeds 10^n.
5, 9, 13, 17, 23, 29, 34, 40, 46, 53, 59, 67, 73, 79, 87, 95, 103, 109, 116, 127, 134, 141, 150, 158, 167, 175, 182, 193, 199, 210, 218, 227, 234, 242, 254, 263, 271, 281, 290, 301, 311, 317, 329, 337, 349, 358, 367, 379, 387, 397, 406, 418, 427, 436, 446, 455
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A027423.
Programs
-
Maple
# multiply two ifactor representations [p1,e1],[p2,e2],[p3,e2] mulif := proc(if1, if2) local ifr,t,p,e,ix,ifi ; ifr := if1 ; for t in if2 do p := op(1,t) ; e := op(2,t) ; ix := 0 ; for ifi from 1 to nops(ifr) do if op(1,op(ifi,ifr)) = p then ix := ifi; break; end if; end do: if ix = 0 then ifr := [op(ifr),[p,e]] ; else e := e+op(2,op(ix,ifr)) ; ifr := subsop(ix=[p,e],ifr) ; end if; end do: return ifr ; end proc: # tau(iff) using multiplicative property of tau tauif := proc(iff) local r; r := 1 ; for t in iff do r := r*(1+op(2,t)) ; end do: return r; end proc: # ifactor representation of m! iffact := proc(m) local r,f ; if m <=1 then return [] ; else r := [[2,1]] ; for f from 3 to m do ifmf := ifactors(f)[2] ; r := mulif(r,ifmf) ; end do: return r; end if: end proc: A027423 := proc(n) iffact(n) ; tauif(%) ; end proc: A098109 := proc(n) local m ; for m from 2 do if A027423(m) > 10^n then return m; end if; end do: end proc: for n from 1 do print(A098109(n)) ; end do: # R. J. Mathar, Nov 19 2011
-
PARI
A027423(n) = {my(prd = 1); forprime(p = 2, n, prd *= (1 + (n - sumdigits(n, p))/(p-1))); prd;} list(lim) = {my(pow = 10); for(k = 1, lim, if(A027423(k) > pow, print1(k, ", "); pow * = 10));} \\ Amiram Eldar, Feb 03 2025