cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321481 Expansion of Sum_{n>=1} q^(n*(n-1)) / (1-q)^n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 25, 32, 41, 53, 69, 90, 117, 151, 193, 244, 306, 382, 476, 593, 739, 921, 1147, 1426, 1768, 2184, 2687, 3293, 4022, 4899, 5955, 7228, 8764, 10618, 12855, 15551, 18794, 22685, 27340, 32893, 39500, 47344, 56641, 67647, 80666, 96059, 114254, 135757, 161164, 191174, 226603, 268399
Offset: 0

Views

Author

Joerg Arndt, Nov 11 2018

Keywords

Crossrefs

Cf. A098132 (expansion of Sum_{n>=0} q^(n*(n+1)) / (1-q)^n ).
Cf. A063978.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k-1))/(1-x)^k, {k, 1, Sqrt[nmax] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 11 2018 *)
  • PARI
    N=66; q='q+O('q^N); Vec( sum(n=1,N,q^(n*(n-1))/(1-q)^n) )

Formula

G.f.: Sum_{n>=1} q^(n*(n-1)) / (1-q)^n.

A348124 Number of compositions of n where the smallest part is smaller than the number of parts.

Original entry on oeis.org

0, 1, 3, 6, 13, 28, 59, 122, 248, 501, 1009, 2028, 4070, 8159, 16343, 32717, 65472, 130991, 262041, 524157, 1048410, 2096943, 4194043, 8388285, 16776819, 33553946, 67108270, 134217002, 268434568, 536869825, 1073740493, 2147482019, 4294965305, 8589932164
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, s, c) option remember; `if`(s b(n$2, 0):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 01 2021
  • Mathematica
    b[n_, s_, c_] := b[n, s, c] = If[s < c, Ceiling[2^(n - 1)],
         If[n == 0, 0, Sum[b[n - j, Min[j, s], c + 1], {j, 1, n}]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)

Formula

a(n) + A098132(n) + A098133(n) = 2^(n-1).

Extensions

a(23)-a(34) from Alois P. Heinz, Oct 01 2021
Showing 1-2 of 2 results.