A098157 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n+1,2k).
1, 1, 1, 0, 3, 1, 0, 1, 6, 1, 0, 0, 5, 10, 1, 0, 0, 1, 15, 15, 1, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0, 1, 66, 495, 924, 495, 66, 1, 0, 0, 0, 0, 0, 0, 13, 286, 1287, 1716, 715, 78, 1
Offset: 0
Examples
Rows begin: {1}, {1,1}, {0,3,1}, {0,1,6,1}, {0,0,5,10,1}, {0,0,1,15,15,1}, ...
Links
- T. Han and S. Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023.
Programs
-
Mathematica
Table[Binomial[n+1, 2(n-k)],{n,0,11},{k,0,n}]//Flatten (* Stefano Spezia, Nov 16 2023 *)
Formula
T(n, k) = binomial(n+1, 2(n-k)) with 0 <= k <= n.
G.f.: (1 + x - q*x)/(1 - 2*q*x - q*x^2 + q^2*x^2). - Tian Han, Nov 16 2023
Comments