A098229 a(n) = 6*c(m,1) where m = A003586(n) is the n-th 3-smooth number, c(m,k) = {(m^(2*k)-1)*B(2*k)}, {x} denotes the fractional part of x and B(k) is the k-th Bernoulli number.
0, 3, 2, 3, 5, 3, 2, 5, 3, 5, 5, 2, 3, 5, 5, 5, 3, 5, 2, 5, 5, 3, 5, 5, 5, 5, 2, 3, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 3, 2, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_] := If[Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]) == n, 6 * FractionalPart[(n^2-1)/6], Nothing]; Array[s, 125000] (* Amiram Eldar, May 03 2025 *)
-
PARI
m=7;for(n=1,1000000,if(gcd(n,6^100)==n,print1(6*frac((n^(2*m)-1)*bernfrac(2*m)),",")))
Formula
a(1) = 0; for k > 0, a(2^k) = 3 and a(3^k) = 2; for i > 0 and j > 0, a(2^i*3^j) = 5.
Comments