cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098248 Chebyshev polynomials S(n,291).

Original entry on oeis.org

1, 291, 84680, 24641589, 7170617719, 2086625114640, 607200737742521, 176693328057958971, 51417151264128318040, 14962214324533282590669, 4353952951287921105566639, 1266985346610460508437301280
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 293*y^2 = -4. See A098249 with A098250.

Programs

  • Mathematica
    LinearRecurrence[{291,-1},{1,291},20] (* Harvey P. Dale, Dec 27 2015 *)

Formula

a(n)= S(n, 291)=U(n, 291/2)= S(2*n+1, sqrt(293))/sqrt(293) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=291*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=291; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (291+17*sqrt(293))/2 and am := (291-17*sqrt(293))/2 = 1/ap.
G.f.: 1/(1-291*x+x^2).