A098248 Chebyshev polynomials S(n,291).
1, 291, 84680, 24641589, 7170617719, 2086625114640, 607200737742521, 176693328057958971, 51417151264128318040, 14962214324533282590669, 4353952951287921105566639, 1266985346610460508437301280
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..405
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (291,-1).
Programs
-
Mathematica
LinearRecurrence[{291,-1},{1,291},20] (* Harvey P. Dale, Dec 27 2015 *)
Formula
a(n)= S(n, 291)=U(n, 291/2)= S(2*n+1, sqrt(293))/sqrt(293) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=291*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=291; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (291+17*sqrt(293))/2 and am := (291-17*sqrt(293))/2 = 1/ap.
G.f.: 1/(1-291*x+x^2).
Comments