cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098256 First differences of Chebyshev polynomials S(n,443)=A098254(n) with Diophantine property.

Original entry on oeis.org

1, 442, 195805, 86741173, 38426143834, 17022694977289, 7541015448795193, 3340652821121293210, 1479901658741284096837, 655593094169567733605581, 290426260815459764703175546, 128658177948154506195773161297, 56995282404771630784962807279025, 25248781447135884283232327851446778
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(21*b(n))^2 - 445*a(n)^2 = -4 with b(n)=A098255(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 445*y^2 = -4 are (21=21*1,1), (9324=21*444,442), (4130511=21*196691,195805), (1829807049=21*87133669,86741173), ...
		

Programs

  • GAP
    a:=[1,442];; for n in [3..20] do a[n]:=443*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,442]; [n le 2 select I[n] else 443*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{443,-1}, {1,442}, 20] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-443*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-443*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1 - x)/(1 - 443*x + x^2).
a(n) = ((-1)^n)*S(2*n, 21*i) with the imaginary unit i and the S(n, x)=U(n, x/2) Chebyshev polynomials.
a(n) = S(n, 443) - S(n-1, 443) = T(2*n+1, sqrt(445)/2)/(sqrt(445)/2), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 443*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=442. - Philippe Deléham, Nov 18 2008

A098255 Chebyshev polynomials S(n,443) + S(n-1,443) with Diophantine property.

Original entry on oeis.org

1, 444, 196691, 87133669, 38600018676, 17099721139799, 7575137864912281, 3355768974435000684, 1486598080536840390731, 658559593908845858093149, 291740413503538178294874276, 129240344622473504138771211119
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(21*a(n))^2 - 445*b(n)^2 = -4 with b(n)=A098256(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 445*y^2 = -4 are (21=21*1,1), (9324=21*444,442), (4130511=21*196691,195805),(1829807049=21*87133669,86741173), ...
		

Programs

  • Mathematica
    LinearRecurrence[{443,-1},{1,444},12] (* Indranil Ghosh, Feb 18 2017 *)

Formula

a(n) = S(n, 443) + S(n-1, 443) = S(2*n, sqrt(445)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 443)=A098254(n).
a(n) = (-2/21)*i*((-1)^n)*T(2*n+1, 21*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-443*x+x^2).
a(n) = 443*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=444. - Philippe Deléham, Nov 18 2008
Showing 1-2 of 2 results.