A098263 Chebyshev polynomials S(n,731).
1, 731, 534360, 390616429, 285540075239, 208729404383280, 152580909064102441, 111536435796454501091, 81532981986299176195080, 59600498295548901344102389, 43567882721064260583362651279
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (731, -1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
LinearRecurrence[{731,-1},{1,731},20] (* Harvey P. Dale, Jun 21 2020 *)
Formula
a(n)= S(n, 731)=U(n, 731/2)= S(2*n+1, sqrt(733))/sqrt(733) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=731*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=731; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (731+27*sqrt(733))/2 and am := (731-27*sqrt(733))/2 = 1/ap.
G.f.: 1/(1-731*x+x^2).
Comments