cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098263 Chebyshev polynomials S(n,731).

Original entry on oeis.org

1, 731, 534360, 390616429, 285540075239, 208729404383280, 152580909064102441, 111536435796454501091, 81532981986299176195080, 59600498295548901344102389, 43567882721064260583362651279
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 733*y^2 = -4. See A098291 with A098292.

Programs

  • Mathematica
    LinearRecurrence[{731,-1},{1,731},20] (* Harvey P. Dale, Jun 21 2020 *)

Formula

a(n)= S(n, 731)=U(n, 731/2)= S(2*n+1, sqrt(733))/sqrt(733) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=731*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=731; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (731+27*sqrt(733))/2 and am := (731-27*sqrt(733))/2 = 1/ap.
G.f.: 1/(1-731*x+x^2).