cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098273 Array by antidiagonals: Number of planar lattice walks of length 3n+2k starting at (0,0) and ending at (k,0), remaining in the first quadrant and using only NE,W,S steps.

Original entry on oeis.org

1, 1, 2, 2, 8, 16, 5, 30, 96, 192, 14, 112, 480, 1408, 2816, 42, 420, 2240, 8320, 23296, 46592, 132, 1584, 10080, 44800, 153600, 417792, 835584, 429, 6006, 44352, 228480, 913920, 2976768, 7938048, 15876096, 1430, 22880, 192192, 1123584, 5107200, 19066880, 59924480, 157515776, 315031552
Offset: 0

Views

Author

Ralf Stephan, Sep 02 2004

Keywords

Examples

			As an array:
  1    2    16    192    2816     46592
  1    8    96   1408   23296    417792
  2   30   480   8320  153600   2976768
  5  112  2240  44800  913920  19066880
  14 420 10080 228480 5107200 114250752
  ...
As a regular triangle:
  1;
  1, 2;
  2, 8, 16;
  5, 30, 96, 192;
  14, 112, 480, 1408, 2816;
  ...
		

Crossrefs

First row is A006335. First column is A000108 (Catalan numbers).

Programs

  • Mathematica
    T[n_, k_] := 4^n (2k+1)/((n+k+1)(2n+2k+1)) Binomial[2k, k] Binomial[3n+2k, n];
    Table[T[n-k, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    T(n,k)=4^n*(2*k+1)/(n+k+1)/(2*n+2*k+1)*binomial(2*k,k)*binomial(3*n+2*k,n)
    
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(2^(2*k)*(k+2*n)!/(k!*(2*n+2)!)*(2*n-2*k+2)!/((n-k)!*(n-k+1)!);, ", ");); print(););} \\ Michel Marcus, Nov 19 2014

Formula

T(n, k) = 4^n * (2k+1)/[(n+k+1)*(2n+2k+1)] * C(2k, k) * C(3n+2k, n).
T(n, k) = 2^(2*k)*(k+2*n)!/(k!*(2*n+2)!)*(2*n-2*k+2)!/((n-k)!*(n-k+1)!), as a triangle. - Michel Marcus, Nov 19 2014