A098280 Front-to-back insertion-permutation sequence.
1, 2, 1, 1, 2, 3, 2, 1, 2, 3, 1, 2, 1, 3, 3, 1, 2, 1, 3, 2, 1, 2, 3, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 1, 3, 2, 1, 4, 4, 2, 3, 1, 2, 4, 3, 1, 2, 3, 4, 1, 2, 3, 1, 4, 4, 2, 1, 3, 2, 4, 1, 3, 2, 1, 4, 3, 2, 1, 3, 4, 4, 3, 1, 2, 3, 4, 1, 2, 3, 1, 4, 2, 3, 1, 2, 4, 4, 1, 3, 2, 1, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 4, 1, 2, 3, 1, 4, 2, 3, 1, 2, 4, 3, 1, 2, 3, 4
Offset: 1
Keywords
Examples
The permutations can be written as 1, 21, 12, 321, 231, 213, 312, 132, 123, etc. Write them in order and insert commas.
Programs
-
PARI
tabf(nn) = my(v=[[1]], w); print(v); for(n=2, nn, w=List([]); for(k=1, #v, for(i=1, n, listput(w, concat([v[k][1..i-1], n, v[k][i..n-1]])))); print(Vec(v=w))); \\ Jinyuan Wang, Sep 01 2021
Formula
Write 1. Then place 2 before 1 and then 2 after 1, yielding 21 and 12, as well as the first 5 terms of the sequence. Next, generate the 6 permutations of 1, 2, 3 by inserting 3 into 21 and then 12, from front-to-back, like this: 321, 231, 213 then 213, 132, 123. Next, generate the 24 permutations of 1, 2, 3, 4 by inserting 4 into the permutations of 1, 2, 3. Continue forever.
Comments