A098281 Back-to-front insertion-permutation sequence.
1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 1, 3, 2, 3, 1, 3, 2, 1, 1, 2, 3, 4, 1, 2, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 1, 3, 2, 4, 1, 3, 4, 2, 1, 4, 3, 2, 4, 1, 3, 2, 3, 1, 2, 4, 3, 1, 4, 2, 3, 4, 1, 2, 4, 3, 1, 2, 2, 1, 3, 4, 2, 1, 4, 3, 2, 4, 1, 3, 4, 2, 1, 3, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 3, 1, 4, 2, 3, 1, 3, 2, 1, 4, 3, 2, 4, 1, 3, 4, 2, 1, 4, 3, 2, 1
Offset: 1
Examples
The permutations can be written as 1, 12, 21, 123, 132, 312, 213, 231, 321, etc. Write them in order and insert commas.
Programs
-
Mathematica
perms[n_] := perms[n] = If[n == 1, {{1}}, Flatten[Table[Insert[#, n, pos], {pos, -1, -n, -1}]& /@ perms[n-1], 1]]; Table[perms[n], {n, 1, 4}] // Flatten (* Jean-François Alcover, Sep 02 2021 *)
-
PARI
tabf(nn) = my(v=[[1]], w); print(v); for(n=2, nn, w=List([]); for(k=1, #v, for(i=1, n, listput(w, concat([v[k][1..n-i], n, v[k][n-i+1..n-1]])))); print(Vec(v=w))); \\ Jinyuan Wang, Aug 31 2021
Formula
Write 1. Then place 2 after 1 and then 2 before 1, yielding 12 and 21, as well as the first 5 terms of the sequence. Next, generate the 6 permutations of 1, 2, 3 by inserting 3 into 12 and then 21, from back-to-front, like this: 123, 132, 312 then 213, 231, 321. Next, generate the 24 permutations of 1, 2, 3, 4 by inserting 4 into the permutations of 1, 2, 3. Continue forever.
Comments