A098299 Member r=14 of the family of Chebyshev sequences S_r(n) defined in A092184.
0, 1, 14, 169, 2016, 24025, 286286, 3411409, 40650624, 484396081, 5772102350, 68780832121, 819597883104, 9766393765129, 116377127298446, 1386759133816225, 16524732478496256, 196910030608138849
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..930
- S. Barbero, U. Cerruti, and N. Murru, On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (13,-13,1).
Programs
-
Mathematica
LinearRecurrence[{13, -13, 1}, {0, 1, 14}, 18] (* Michael De Vlieger, Feb 23 2021 *)
Formula
a(n) = (T(n, 6)-1)/5 with Chebyshev's polynomials of the first kind evaluated at x=6: T(n, 6)=A023038(n)= ((6+sqrt(35))^n + (6-sqrt(35))^n)/2.
a(n) = 12*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 13*a(n-1) - 13*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=14.
G.f.: x*(1+x)/((1-x)*(1-12*x+x^2)) = x*(1+x)/(1-13*x+13*x^2-x^3) (from the Stephan link, see A092184).